Research article

Dipteryx alata Vogel (Fabaceae) a neotropical tree with high level of selfing: implication for conservation and breeding programs

Evandro Vagner Tambarussi, Alexandre M. Sebbenn , Alessandro Alves-Pereira, Roland Vencovsky, Jose Cambuim, Alexandre da Silva, Marcela Moraes, Mario L.T. de Moraes

Evandro Vagner Tambarussi
Universidade Estadual do Centro-Oes-te, Departamento de Engenharia Florestal, PR 153, Km 7, 84500-000, Irati, PR, Brazil & Programa de Pós-Graduação em Ciência Florestal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Rua José Barbosa de Barros, 1780, Portaria II: Rodovia Alcides Soares, Km 3, 18610-307, Botu-catu, SP, Brazil
Alexandre M. Sebbenn
Instituto Florestal de São Paulo, CP 1322, São Paulo, SP, 01059-970, Brazil & Programa de Pós-Graduação em Agronomia, Universidade Estadual Paulista, Av. Brasil Centro 56, CP 31, Ilha Solteira, SP, 15385-000, Brazil. Email:
Alessandro Alves-Pereira
Escola Superior de Agricultura “Luiz de Queiroz”, Av. Pádua Dias, 11, PO Box 9, 13418-090, Piracicaba, SP, Brazil
Roland Vencovsky
Escola Superior de Agricultura “Luiz de Queiroz”, Av. Pádua Dias, 11, PO Box 9, 13418-090, Piracicaba, SP, Brazil
Jose Cambuim
Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Av. Brasil Centro 56, CP 31, Ilha Solteira, SP, 15385-000, Brazil
Alexandre da Silva
Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Av. Brasil Centro 56, CP 31, Ilha Solteira, SP, 15385-000, Brazil
Marcela Moraes
Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Av. Brasil Centro 56, CP 31, Ilha Solteira, SP, 15385-000, Brazil
Mario L.T. de Moraes
Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Av. Brasil Centro 56, CP 31, Ilha Solteira, SP, 15385-000, Brazil

Online First: September 15, 2017
Tambarussi, E., Sebbenn, A., Alves-Pereira, A., Vencovsky, R., Cambuim, J., da Silva, A., Moraes, M., de Moraes, M. 2017. Dipteryx alata Vogel (Fabaceae) a neotropical tree with high level of selfing: implication for conservation and breeding programs. Annals of Forest Research DOI:10.15287/afr.2017.842

Dipteryx alata (Fabaceae) is a threatened tropical tree of the Brazilian Savanna. Due to deforestation of its biome, many individuals and populations are now spatially isolated in forest fragments, pastures, and along roads. Plans for in situ and ex situ conservation of the species are urgently needed. To support conservation, the mating system and pollen dispersal patterns must be better understood as they determine the levels of genetic diversity, inbreeding, and effective size of seed generations. Microsatellite were used to investigated the mating system, pollen dispersal, genetic diversity, spatial genetic structure (SGS), and inbreeding in isolated trees in pastures and along roads from two populations with different densities in the Brazilian Savanna. Our aim is to determine the potential of these trees to contribute to seed collection for genetic conservation. We found that the species presents a mixed mating system, strong individual variation in outcrossing rate (0.01-1.0), and non-random mating. Low population density resulted in lower levels of outcrossing (tm = 0.45) and mating among relatives (tm - ts = 0.12), but longer pollen dispersal distances (δ = 6,572 m) than in the higher density populations (tm = 0.90, tm - ts = 0.26, δ = 1,395 m). Mating among relatives was explained by SGS detected in the populations, associated with near-neighbor pollinator foraging behavior. Correlated mating indicates that a low effective number of pollen donors (1.5-10.3) fertilized the trees. Thus, open-pollinated seedling families present mixtures of different levels of relatedness and inbreeding. Our results are discussed in light of strategies for in and ex situ conservation.

Allendorf, F.W., Luikart, G.H., Aitken, S.N., 2013. Conservation and the genetics of populations. Oxford Wiley-Blackwell. 2nd ed. 602 p.
Ashley, M.V., 2010. Plant parentage, pollination, and dispersal: How DNA microsatellites have altered the landscape. Critical Reviews in Plant Sciences 29(3): 148–161. DOI: 10.1080/07352689.2010.481167
Austerlitz, F., Smouse, P.E., 2001. Two-generation analysis of pollen flow across a landscape. II. Relation between FH’, pollen dispersal, and inter-female distance. Genetics 157(2):851–857.
Baldauf, C., Ciampi-Guillardi, M., Aguirra, T.J., Corrêa, C.E., Santos, F.A.M., Souza, A.P., Sebbenn, A.M., 2014. Genetic diversity spatial genetic structure and realized seed and pollen dispersal of Himatanthus drasticus (Apocynaceae) in the Brazilian savanna. Conservation Genetetics 15(5): 1073–1083. DOI: 10.1007/s10592-014-0600-5
Bittencourt, J.M., Sebbenn, A.M., 2007. Patterns of pollen and seed dispersal in a small fragmented population of a wind pollinated Araucaria angustifolia in southern Brazil. Heredity 99(6):580–591. DOI: 10.1038/sj.hdy.6801019
Breed, M.F., Gardner, M.G., Ottewell, K.M., Navarro, C.M., Lowe, A.J., 2012. Shifts in reproductive assurance strategies and inbreeding costs associated with habitat fragmentation in Central American mahogany. Ecology Letters 15(5): 444–452. DOI: 10.1111/j.1461-0248.2012.01752.x
Burgess, I.P., Williams, E.R., Bell, J.C., Harwood, C.E., 1996. The effect of outcrossing rate on the growth of selected families of Eucalyptus grandis. Silvae Genetica 45: 97–100.
Burczyk, J., DiFazio, S.P., Adams, W.T., 2004. Gene flow in forest trees: how far do genes really travel. Forest Genetics 11(3-4): 179–192.
Chaves, L.J., Vencovsky, R., Silva, R.S.M., Telles, M.P.C., Zucchi, M.I., Coelho, A.S.G., 2011. Estimating inbreeding depression in natural plant populations using quantitative and molecular data. Conservation Genetics 12(2): 569–576. DOI: 10.1007/s10592-010-0164-y
Chybicki, I.J., Burczyk, J., 2009. Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity 100(1): 106–113. DOI: 10.1093/jhered/esn088
Cockerham, C.C., Weir, B.S., 1984. Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics. 40(1): 157–164. DOI: 10.2307/2530754
Collevatti, R.G., Telles, M.P.C., Nabout, J.C., Chaves, L.J., Soares, T.N., 2013. Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas. Heredity 111(2): 97–105. DOI: 10.1038/hdy.2013.23
Degen, B., Sebbenn, A.M., 2014. Genetics and Tropical Forests. In: Pancel L., Kohl M. (eds.) Tropical Forestry Handbook, 2nd ed. Springer Verlag, pp. 1–30. DOI: 10.1007/978-3-642-41554-8_75-1
Doyle, J.J., Doyle, J.L., 1990. Isolation of plant DNA from fresh tissue. Focus 12(1):13–15.
Duminil, J., Abessolo, D.T.M., Bourobou, D.N., Doucet, J-L., Loo, J., Hardy, O., 2016. High selfing rate, limited pollen dispersal and inbreeding depression in the emblematic African rain forest tree Baillonella toxisperma – Management implications. Forest Ecology and Management 379(1): 20–29. DOI: 10.1016/j.foreco.2016.08.003
Duminil, J., Dainou, K., Kaviriri, D.K., Gillet, P., Loo, J., Doucet, J.L., Hardy, O.J., 2016. Relationships betwenn population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests. Heredity 116(3): 295–303. DOI: 10.1038/hdy.2015.101
Ellstrand, N.C., 2014. Is gene flow the most important evolutionary force in plants? American Journal of Botany101(5): 737–753. DOI: 10.3732/ajb.1400024
Feres, J.M., Sebbenn, A.M., Guidugli, M.C., Mestriner, M.A., Moraes, M.L.T., Alzarte-Marin, A.L., 2012. Mating system parameters at hierarchical levels of fruits, individuals and populations in the Brazilian insect-pollinated tropical tree, Tabebuia roseo-alba (Bignoniaceae). Conservation Genetics 13(2):393–405. DOI 10.1007/s10592-011-0292-z
Frankhan, R., 2012. How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity 168(3): 167–178. DOI: 10.1038/hdy.2011.66
Fuchs, E.J., Lobo, J.A., Quesada, M., 2003. Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conservation Biology 17: 149–157. DOI: 10.1046/j.1523-1739.2003.01140.x
Fuchs, E.J., Hamrick, J.L., 2011. Mating system and pollen flow between remnant populations of the endangered tropical tree, Guaiacum sanctum (Zygophyllaceae). Conservation Genetics 12(1):175–185. DOI 10.1007/s10592-010-0130-8
Gaitán-Solís, E., Duque, M.C., Edwards, K.J., Tohme, J., 2002. Microsatellite in common bean (Phaseolus vulgaris): Isolation, characterization, and cross-species amplification in Phaseolus sp. Crop Science 42(6): 2128–2136. DOI:10.2135/cropsci2002.2128
Goudet, J., 2002. FSTAT (Version a computer program to calculate F-statistics. Journal of Heredity 86(6): 485–486. DOI: 10.1093/oxfordjournals.jhered.a111627
Hardy, O.J., Vekemans, X., 2002. SPAGeDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2(4): 618–620. DOI: 10.1046/j.1471-8286.2002.00305.x
Hedrick, P.W., 2005. A standardized genetic differentiation measure. Evolution 59(8): 1633–1638. DOI: 10.1111/j.0014-3820.2005.tb01814.x
Hufford, K.M., Hamrick, J.L., 2003. Viability selection at three early life stages of the tropical tree, Platypodium elegans (Fabaceae, Papilionoideae). Evolution 57(3): 518–526. DOI: 10.1111/j.0014-3820.2003.tb01543.x
Ibanes, B., Sebbenn, A.M., Azevedo, V.C.R., Moreno, M.A., Gandara, F.B., Tambarussi, E.V., Ferraz, E.M., Damasceno-Silva, K.J., Lima, P.S.C., Carvalhaes, M.A., 2016. Genetic diversity and spatial genetic structure in populations of Orbignya phalerata Mart. under different exploitation intensities in the Brazilian savanna. Silvae Genetica 64: 201–211.
Ismail, S.A., Ghazoul, J., Ravikanth, G., Kushalappa, C.G., Shaanker, R.U., Kettle C.J., 2014. Fragmentation genetics of Vateria indica: implications for management of forest genetic resources of an endemic dipterocarp. Conservation Genetics 15(3): 533–545. DOI: 10.1007/s10592-013-0559-7
IUCN (1998). 1998 IUCN Red List of Threatened Species. Web: Accessed: 08.2017.
Kalinowski, S.T., Taper, M.L., Marshall, T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16(5): 1099–1106. DOI: 10.1111/j.1365-294X.2007.03089.x
Lacerda, A.E.B., Kanashiro, M., Sebbenn, A.M., 2008. Long-pollen movement and deviation of random mating in a low-density continuous population of a tropical tree Hymenaea courbaril in the Brazilian Amazon. Biotropica. 40(4): 462–470. DOI: 10.1111/j.1744-7429.2008.00402.x
Lander, T.A., Boshier, D.H., Harris, S.A., 2010. Fragmented but not isolated: Contribution of single trees, small patches and long distance pollen flow to genetic connectivity for Gomortega keule, and endangered tree. Biological Conservation 143(11): 2383–2590.
Leonarduzzi, C., Leonardi, S., Menozzi, P., Piotti, A., 2012. Towards an optimal sampling effort for paternity analysis in forest trees: what do the raw numbers tell us? iForest 5: 18–25. DOI: 10.3832/ifor0606-009
Loiselle, B.A., Sork, V.L., Nason, J., Graham, C., 1995. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82(11): 1420–1425. DOI: 10.2307/2445869
Lorenzi, H., 2002. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil [Brazilian Trees: manual for identification and cultivation of native tree plants in Brazil]. 4 ed. Nova Odessa: Instituto Plantarum, 384 p.
Matschiner, M., Salzburger, W., 2009. Tandem: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25(15):1982-1983. DOI: 10.1093/bioinformatics/btp303
Melo, A.T.O., Franceschinelli, E.V., 2016. Gene flow and fine-scale spatial genetic structure in Cabralea canjerana (Meliaceae), a common tree species from the Brazilian Atlantic forest. Journal of Tropical Ecology 132(2): 135–135. DOI: 10.1017/S0266467416000067
Mendonça, R.C., Fefili, J.M., Walter, B.M.T., Silva Júnior, M.C., Resende, A.V., Filgueiras, T.S., Nogueira, P.E., 2008. Flora vascular do Cerrado [Vascular flora of the brazilian savanna]. In: Sano S.M., Almeida S.P. (eds.), Cerrado: ambiente e flora [Brazilian savanna: environment and flora] (1st ed). Planaltina, Brazil. Embrapa-CPAC.
Miranda, A.C., Moraes, M.L.T., Tambarussi, E.V., Furtado, E.L., 2013. Heritability for resistance to Puccinia psidii Winter rust in Eucalyptus grandis Hill ex Maiden in Southwestern Brazil. Tree Genet Genomes 9(2): 321–329.
Moraes, M.A., Gaino, A.P.S., Moraes, M.L.T., Freitas, M.L.M., 2012. Estimating coancestry within open-pollinated progenies of a dioecious species: the case study of Myracrodruon urundeuva. Silvae Genetica 61: 256–264.
Oliveira, M.I.B., Sigrist, M.R., 2008. Fenologia reprodutiva, polinização e reprodução de Dipteryx alata Vogel (Leguminosae-Papilionoideae) em Mato Grosso do Sul, Brasil. Revista Brasiliena Botanica 31(2): 195–207. DOI: 10.1590/S0100-84042008000200002
Ritland, K., 2002. Extensions of models for the estimation of mating systems using n independent loci. Heredity 88(4): 221–228. DOI: 10.1038/sj.hdy.6800029
Robledo-Arnuncio, J.R., Austerlitz, F., Smouse, P.E., 2007. POLDISP: a software package for indirect estimation of contemporary pollen dispersal. Molecular Ecology 7: 763–766. DOI: 10.1111/j.1471-8286.2007.01706.x
Rymer, P.D., Sandiford, M., Harris, S.A., Billingham, M.R., Boshier, D.H., 2015. Remnant Pachira quinata pasture trees have greater opportunities to self and suffer reduced reproductive success due to inbreeding depression. Heredity 115(2): 115–124. DOI: 10.1038/hdy.2013.73
Sano, E.E., Rosa, R., Brito, J.L.S., Ferreira, L.G., 2007. Mapeamento de cobertura vegetal do bioma Cerrado. Planaltina: Embrapa Cerrados. 60 p.
Sano, S.M., Ribeiro, J.F., Brito, M.A., 2004. Baru: biologia e uso [Baru: biology and use]. Planaltina: Embrapa Cerrados. Embrapa Cerrados. Documentos. 52 p.
Sebbenn, A.M., 2006. Sistema de reprodução em espécies arbóreas tropicais e suas implicações para a seleção de árvores matrizes para reflorestamentos ambientais [Mating system in tropical tree species and its implications for the selection of seed trees reforestation]. In: Higa A.R., Silva L.D. (eds.), Pomares de sementes de espécies florestais nativas [Orchards of seeds of native forest species]. FUPEF, Curitiba, pp. 93- 138.
Sebbenn, A.M., Carvalho, A.C.M., Freitas, M.L.M., Moraes, S.M.B., Gaino, A.P.S.C., Silva, J.M., Jolivet, C., Moraes, M.L.T., 2011. Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106(1): 134–145. DOI: 10.1038/hdy.2010.33
Silva, C.R.S., Albuquerque, P.S.B., Ervedosa, F.R., Figueira, A., Sebbenn, A.M., 2011. Understanding the genetic diversity, spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian Amazon. Heredity 106(6): 973–985. doi: 10.1038/hdy.2010.145
Simon, M.F., Grether, R., de Queiroz, L.P., Skema, C., Pennington, R.T., Hughes, C.E., 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of the United States of America 106(48): 20359–20364. DOI: 10.1073/pnas.0903410106
Soares, T.N., Chaves, L.J., Telles, M.P.C., Diniz-Filho, J.A.F., Resende, L.V., 2008. Landscape conservation genetics of Dipteryx alata (“baru” tree: Fabaceae) from Cerrado region of central Brazil. Genetica 132(1): 9–19. DOI: 10.1007/s10709-007-9144-7
Soares, T.N., Diniz-Filho, J.A.F., Nabout, J.C., Telles, M.P.C., Terribile, L.C., Chaves, L.J., 2015. Patterns of genetic variability in central and peripheral populations of Dipteryx alata (Fabaceae) in the Brazilian Cerrado. Plant Systematics and Evolution 301: 1315–1324. DOI: 10.1007/s00606-014-1155-0
Soares, T.N., Melo, D.B., Resende, L.V., Vianello, R.P, Chaves, L.J., Collevatti, R.G., Telles, M.P.C., 2012. Development of microsatellite markers for the Neotropical tree species Dipteryx alata (Fabaceae). American Journal of Botany e72–e73. DOI: 10.3732/ajb.1100377
Surles, S.E., Arnold, J., Schnabel, A., Hamrick, J.L., Bongarten, B.C. 1990. Genetic relatedness in open pollinated families of two leguminous tree species, Robinia pseudoacacia L. and Gleditsia triacanthos L. Theoretical and Applied Genetics 80(1): 49–56.
Takemoto, E., Ohada, I.A., Garbelotti, M.L., Tavares, M., Aued-Pimentel, S., 2001. Composição química da semente e do óleo de baru (Dipteryx alata Vog.) nativo do Município de Pirenópolis, Estado de Goiás [Chemical composition of the seed and oil of Baru (Dipteryx alata Vog.) native of the Municipality of Pirenópolis, State of Goiás]. Revista do Instituto Adolfo Lutz 60(2): 113–117.
Tambarussi, E.V., Boshier, D., Vencovsky, R., Freitas, M.L.M., Sebbenn, A.M., 2015. Paternity analysis reveals significant isolation and near neighbor pollen dispersal in small Cariniana legalis Mart. Kuntze populations in the Brazilian Atlantic Forest. Ecology and Evolution 5(23): 5588–5600. DOI: 10.1002/ece3.1816
Tambarussi, E.V., Boshier, D.H., Vencovsky, R., Freitas, M.L.M. Di-Dio, O.J., Sebbenn, A.M., 2016. Several Small: How inbreeding affects conservation of Cariniana legalis Mart. Kuntze (Lecythidaceae) the brazilian Atlantic Forest’s largest tree. International Forestry Review 18(4): 502–510. DOI: 10.1505/146554816820127550
Tambarussi, E.V., Boshier, D.H., Vencovsky, R., Freitas, M.L.M., Sebbenn, A.M., 2017. Inbreeding depression from selfing and mating between relatives in the Neotropical tree Cariniana legalis Mart. Kuntze. Conservation Genetics 18(1):225–234. DOI: 10.1007/s10592-016-0896-4
Tarazi, R., Moreno, M.A., Gandara, F.B., Ferrazi, E.M., Moraes, M.L.T., Vinson, C.C., Ciampi, A.Y., Vencovsky, R., Kageyama, P.Y., 2010. High levels of genetic differentiation and selfing in the Brazilian cerrado fruit tree Dipteryx alata Vog. (Fabaceae). Genetics and Molecular Biology 33(1): 78–85. DOI: 10.1590/S1415-47572010005000007
Vekemans, X., Hardy, O.J., 2004. New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13(4): 921–935.

No Supplimentary Material available for this article.
No metrics available for this article.