Research article

Using classification trees to predict forest structure types from LiDAR data

Chiara Torresan , Piermaria Corona, Gianfranco Scrinzi, Joan Valls Marsal

Chiara Torresan
National Research Council – Institute for biometeorology. Email:
Piermaria Corona
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca per la selvicoltura (SEL)
Gianfranco Scrinzi
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Unità di ricerca per il monitoraggio e la pianificazione forestale (MPF)
Joan Valls Marsal
Biomedical Research Institute of Lleida, Biostatistics Unit

Online First: May 06, 2016
Torresan, C., Corona, P., Scrinzi, G., Valls Marsal, J. 2016. Using classification trees to predict forest structure types from LiDAR data. Annals of Forest Research DOI:10.15287/afr.2016.423

This study assesses whether metrics extracted from airborne LiDAR (Light Detection and Ranging) raw point cloud can be exploited to predict different forest structure types by means of classification trees. Preliminarily, a bivariate analysis by means of Pearson statistical test was developed to find associations between LiDAR metrics and the proportion of basal area into three stem diameter classes (understory, mid-story, and over-story trees) of 243 random distributed plots surveyed from 2007 to 2012 in Trento Province (Northern Italy). An unsupervised clustering approach was adopted to determine forest structural patterns on the basis of basal area proportion in the three stem diameter classes, using a k-means procedure combined with a previous hierarchical classification algorithm. A comparison among the identified clusters centroids was performed by the Kruskall-Wallis test. A classification tree model to predict forest structural patterns originating from the cluster analysis was developed and validated. Between 18 potential LiDAR metrics, 11 were significantly correlated with the proportion of basal area of understory, mid-story, and overstory trees. The results coming from the agglomerative hierarchical clustering allowed identification of 5 clusters of forest structure: pole-stage (70% of the considered cases), young (15%), adult (24.3%), mature (24.3%), and old forests (30%). Five LiDAR metrics were selected by the classification tree to predict the forest structural types: standard deviation and mode of canopy heights, height at which 95% and 99% of canopy heights fall below, difference between height at which 90% and 10% of canopy heights fall below. The validation tree model process showed a misclassification error of 45.9% and a level of user’s accuracy ranging between 100% and 33.3% in the validation data set. The highest level of user’s accuracy was reached in the classification of pole-stage forests (100%), in which more than 82% of basal area is due to the understory-trees, follow by the classification of old forests types (63.5% of basal area due to the overstory-trees) achieved 76.5% of user’s accuracy. The model has provided moderately satisfactory results in term of classification performance: substantial room for improvement might be established by multi- or hyperspectral imaging that allow detailed characterization of the spectral behaviour of the forest structure types.

Axelsson P., 1999. Processing of laser scanner data - algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing 54(2): 138-147. DOI: 10.1016/S0924-2716(99)00008-8.

Chirici G., Scotti R., Montaghi A., Barbati A., Cartisano R., Lopez G., Marchetti M., McRoberts R.E., Olsonn H., Corona P., 2013. Stochastic gradient boosting classification trees for forest fuel types mapping through airborne laser scanning and IRS LISS-III imagery. International Journal of Applied Earth Observation and Geoinformation 25: 87-97. DOI:

Coops N.C., Hilker T., Wulder M.A., St-Onge B.A., Newnham G.J., Siggins A., Trofymow J.A., 2007. Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees - Structure and Function 21: 295-310. DOI: 10.1007/s00468-006-0119-6.

Corona P., 2010. Integration of forest mapping and inventory to support forest management. iForest - Biogeosciences and Forestry 3: 59-64. DOI: 10.3832/ifor0531-003.

Corona P., Fattorini L., 2008. Area-based lidar-assisted estimation of forest standing volume. Canadian Journal of Forest Research 38: 2911-2916. DOI: 10.1139/X08-122.

Corona P., Fattorini L., Franceschi S., Scrinzi G., Torresan C., 2014. Estimation of standing wood volume in forest compartments by exploiting airborne laser scanning information: model-based, design-based, and hybrid perspectives. Canadian Journal of Forest Research 44: 1303-1311. DOI: 10.1139/cjfr-2014-0203.

Corona P., Cartisano R., Salvati R., Chirici G., Floris A., Di Martino P., Marchetti M., Scrinzi G., Clementel F., Travaglini D., Torresan C., 2012. Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy. European Journal of Remote Sensing 45: 27-37. DOI: 10.5721/EuJRS20124503.

Dalponte M., Bruzzone L., Gianelle D., 2008. Fusion of Hyperspectral and LiDAR Remote Sensing Data for Classification of Complex Forest Areas. Geosciences and Remote Sensing, IEEE Transactions on 46(5): 1416-1427. DOI: 10.1109/TGRS.2008.916480.

Dalponte M., Bruzzone L., Vescovo L., Gianelle D., 2009. The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sensing of Environment 113 (2009) 2345-2355.

Drake J.B., Dubayah R.O., Clark R.O., Knox D.B., Blair J.B., Fofton M.A., Chazdon R.L., Weishampel J.F., Prince S., 2002. Estimation of tropical forest structural characteristics using large-footprint LiDAR. Remote Sensing of Environment 79(2-3): 305-319.

Durbha S.S., King R.L., Younan N.H., 2007. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sensing of Environment 107, 348-361.

Ediriweera S., Pathirana S., Danaher T., Nichols D., 2014. LiDAR remote sensing of structural properties of subtropical rainforest and eucalypt forest in complex terrain in north-eastern Australia. Journal of Tropical Forest Science 26(3): 397-408.

Everitt B.S., Landau S., Leese M., 2001. Cluster Analysis. 4th Edition, Oxford University Press, Inc., New York; Arnold, London.

Fallah A., Kalbi S., Shataee S., 2013. Forest stand types classification using tree-based algorithms and SPOT-HRG Data. The International Journal of Environmental Resources Research 1(3): 31-45.

Garcia-Gutierrez J., Martinez-Álvarez F., Troncoso A., Riquelme J.C., 2014. A comparative study of machine learning regression methods on LiDAR data: A case study. International Joint Conference SOCO’13-CISIS’13-ICEUTE’13, Advances in Intelligent Systems and Computing 239: 249-258.

Ghose M.K., Pradhan R., Ghose S.S., 2010. Decision tree classification of remotely sensed satellite data using spectral separability matrix. International Journal of Advanced Computer Science and Applications 1(5): 93-101.

Gleason C.J., Im J., 2012. Forest biomass from airborne LiDAR data using machine learning approaches. Remote Sensing of Environment 125: 80-91.

Gómez C., Wulder M.A., Montes F., Delgado J.A., 2012. Modeling forest structural parameters in the Mediterranean pines of Central Spain using QuickBird-2 imagery and classification and regression tree analysis (CART). Remote Sensing 4: 135-159. DOI: 10.3390/rs4010135.

Görgens E.B., Montaghi A., Estraviz Rodriguez L.C., 2015a. A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics. Computers and Electronics in Agriculture 116: 221-227. DOI: 10.1016/j.compag.2015.07.004.

Görgens E.B., Packalen P., da Silva A.G.P., Alvares C.A., Campoe O.C., Stape J.L., Rodriguez L.C.E., 2015b. Stand volume models based on stable metrics as from multiple ALS acquisitions in Eucalyptus plantations. Annals of Forest Science 72(4): 489-498. DOI: 10.1007/s13595-015-0457-x.

Griffiths P., Kuemmerle T., Baumann M., Radeloff V.C., Abrudan I.V., Lieskovsky J., Munteanu C., Ostapowicz K., Hostert P., 2012. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sensing of Environment 151: 72-88. DOI: 10.1016/j.rse.2013.04.022.

Holmgren J., Jonsson, T. 2004. Large scale airborne laser-scanning of forest resources in Sweden. In: Thies, M., Koch, B., Spiecker, H., Weinacker, H. (eds.), Laser scanners for forest and landscape assessment. Proceedings of the ISPRS Working Group VIII/2. Freiburg, Germany, October 3-6, 2004. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. vol. XXXVI, Part 8/W2, pp. 157-160.

Hudak A.T., Evans J.S., Smith A.M.S., 2009. LiDAR utility for natural resource Managers. Remote Sensing 1(4): 934-951. DOI: 10.3390/rs1040934.

Hyyppäa J., Hyyppä H., Leckiec D., Gougeonc F., Yua X, Maltamo M., 2008. Review of methods of small footprint airborne laser scanning for extracting forest inventory data in boreal forests. International Journal of Remote Sensing 29(5):1339-1366. DOI: 10.1080/01431160701736489.

Isenburg M., Trunzer H., Malmer F., 2014. Experiences with LiDAR canopy penetration in a dense tropical rainforest. 35th Asian Conference on Remote Sensing 2014, ACRS 2014: Sensing for Reintegration of Societies.

Ke Y., Quackenbush L.J., Im J., 2010. Synergistic use of QuickBird multispectral imagery and LiDAR data for object-based forest species classification. Remote Sensing of Environment 114(2010): 1141-1154.

Lefsky M.A., Cohen W.B., Acker S.A., Parker G.G., Spies T.A., Harding D., 1999. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sensing of Environment 70(3): 339-361.

Lefsky M.A., Cohen W.B., Acker S.A., Parker G.G., Spies T.A., Parker G.G., Harding, D., 1998. Lidar remote sensing of forest canopy structure and related biophysical parameters at H.J. Andrews experimental forest, Oregon, USA. Remote Sensing of Environment 70(3): 339–361.

Li M., Im J., Beier C., 2013. Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. GIScience & Remote Sensing 50(4): 361-384, DOI: 10.1080/15481603.2013.819161.

Lim K., Treitz P., Baldwin K., Morrison I., Green J., 2003b. LiDAR remote sensing of biophysical properties of tolerant northern hardwood forests. Canadian Journal of Remote Sensing 29: 648-678.

Lim K., Treitz P., Wulder M., St-Ongé B., Flood M., 2003a. LiDAR remote sensing of forest structure. Progress in Physical Geography 27(1): 88-106.

Maltamo M., Packalén P., Yu X., Eerikäinen K., Hyyppä J., Pitkänen J., 2005. Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. Forest Ecology and Management 216: 41-50. DOI: 10.1016/j.foreco.2005.05.034.

McGaughey R.J., 2012. FUSION/LDV: Software for LiDAR data analysis and visualization, Version 3.01. USFS.

McRoberts R.E., Tomppo E.O., 2007. Remote sensing support for national forests inventories. Remote Sensing of Environment 110: 412-419.

Means J.E., Acker S.A., Fitt B.J., Renslow M., Emerson L., Hendrix C.J., 2000. Predicting Forest Stand Characteristics with Airborne Scanning Lidar. Photogrammetric Engineering & Remote Sensing 66(11): 1367-1371.

Moss I., 2012. Stand structure classification, succession, and mapping using LiDAR. A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Graduate Studies (Forestry), The University of British Columbia (Vancouver), April 2012.

Næsset E., 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment 80(1): 88-99.

Odasso M., 2002. I tipi forestali del Trentino [Forest types of Trentino]. Report del Centro di Ecologia Alpina, 25, 192 p.

Parker G.G., Russ E.M., 2004. The canopy surface and stand development assessing forest canopy structure and complexity with near-surface altimetry. Forest Ecology and Management 189: 307-315. DOI: 10.1016/j.foreco.2003.09.001.

Pastorella F., Paletto A., 2013. Stand structure indices as tools to support forest management: an application in Trentino forests (Italy). Journal of Forest Science 59(4): 159-168.

PAT (Provincia Autonoma di Trento) e Servizio Foreste e Fauna, 2008. Rapporto sullo stato delle foreste e della fauna [State of the forests and fauna report]. Testo a cura di Stefano Dellantonio e Cristina Gandolfo.

Pike R.J., Wilson S.E., 1971. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Bulletin of the Geological Society of America 82: 1079-1084. DOI: 10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2.

Reutebuch S.E., McGaughey R.J., Andersen H.-E., Carson W.W, 2003. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Canadian Journal of Remote Sensing 29(5): 527-535.

Ruiz L.A., Hermosilla T., Mauro F., Godino M., 2014. Analysis of the influence of pot size and LiDAR density on forest structure attribute estimates. Forests 5: 936-951. DOI: 10.3390/f5050936.

Scrinzi G., Floris A., 2003. Procedure di individuazione, materializzazione e ritrovamento dei punti campionamento [Procedures for identifying, materialization and discovery of sampling points]. Inventario Nazionale delle Foreste e dei Serbatoi forestali del Carbonio – INFC, Corpo Forestale dello Stato. Isafa, Trento, 48 p.

Šebeň V., Bošeľa M., 2010. Different approaches to the classification of vertical structure in homogeneous and heterogeneous forests. Journal of Forest Science 56(4): 171-176.

Sherrill K.R, Lefsky M.A., Bradford J.B., Ryan M.G., 2008. Forest structure estimation and pattern exploration from discrete-return lidar in subalpine forests of the central Rockies. Canadian Journal of Forest Research 38: 2081-2096. DOI: 10.1139/X08-059.

Stephenson N.L., Das A.J., Condit R., Russo S.E., Baker P.J., Beckman N.G., Coomes D.A., Lines E.R., Morris W.K., Ruger N., Alvarez E., Blundo C., Bunyavejchewin S., Chuyong G., Davies S.J., Duque A., Ewago C.N., Flores O., Franklin J.F., Grau H.R., Hao Z., Harmon M.E., Hubbell S.P., Kenfack D., Lin Y., Makana J.-R., Malizia A., Malizia L.R., Pabst R.J., Pongpattananurak N., Su S.-H., Sun I-F., Tan S., Thomas D., van Mantgem P.J., Wang X., Wiser S.K., Zavala M.A., 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90-93. DOI: 10.1038/nature12914.

Strunk J., Temesgen H., Andersen H.E., Flewelling J.P., Madsen L., 2012. Effects of LiDAR pulse density and sample size on a model-assisted approach to estimate forest inventory variables. Canadian Journal of Remote Sensing 38(5): 644-654.

Torresan C., Strunk J., Zald H. S. J., Zhiqiang Y., Cohen W. B., 2014. Comparing statistical techniques to classify the structure of mountain forest stands using CHM-derived metrics in Trento province (Italy). European Journal of Remote Sensing 47: 75-94. DOI: 10.5721/EuJRS20144706.

Vierling K.T., Vierling L.A., Gould W.A., Martinuzzi S., Clawges R.M. 2008. Lidar: shedding new light on habitat characterization and modeling. Frontiers in Ecology and the Environment 6(2): 90-98.

Ward J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301): 236-244. DOI: 10.1080/01621459.1963.10500845.

Watt M.S., Adams T., Gozalez Aracil S., Marshall H., Watt P., 2013. The influence of LiDAR pulse density and plot size on the accuracy of New Zealand plantation stand volume equations. New Zealand Journal of Forestry Science 43:15.

Wulder M.A., White J.C, Nelson R.F., Næsset E., Ørka H.O., Coops N.C., Hilker T., Bater C.W, Gobakken C., 2012. Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment 121: 196-209.

Zhao K., Popescu S., Meng X., Pang Y., Agca M., 2011. Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sensing of Environment 115(8): 1978-1996. DOI: 10.1016/j.rse.2011.04.001.

Zhao K., Popescu S.C., Zhang X., 2008. Bayesian learning with Gaussian processes for supervised classification of hyperspectral data. Photogrammetric Engineering & Remote Sensing 74(10): 1223-1234.

No Supplimentary Material available for this article.
No metrics available for this article.