Research article

Application of 13C NMR spectroscopy to characterize organic chemical components of decomposing coarse woody debris from different climatic regions

Takuya Hishinuma, Takashi Osono , Yu Fukasawa, Jun-ichi Azuma, Hiroshi Takeda

Takuya Hishinuma
Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan
Takashi Osono
Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan. Email: tosono@ecology.kyoto-u.ac.jp
Yu Fukasawa
Laboratory of Forest Ecology, Graduate School of Agricultural Science, Tohoku University, Miyagi 989-6711, Japan
Jun-ichi Azuma
Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
Hiroshi Takeda
Wild Life Preservation Laboratory, Faculty of Engineering, Doshisha University, Kyoto 610-0394, Japan

Online First: March 31, 2015
Hishinuma, T., Osono, T., Fukasawa, Y., Azuma, J., Takeda, H. 2015. Application of 13C NMR spectroscopy to characterize organic chemical components of decomposing coarse woody debris from different climatic regions. Annals of Forest Research DOI:10.15287/afr.2015.356


Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy was applied to coarse woody debris (CWD) in different stages of decomposition and collected from forest floor of a subtropical, a cool temperate, and a subalpine forest in Japan. The purpose was to test its applicability to characterize organic chemical composition of CWD of broad-leaved and coniferous trees from different climatic conditions. O-alkyl-C, mainly representing carbohydrates, was the predominant component of CWD at the three sites, accounting for 43.5-58.1% of the NMR spectra. Generally, the relative area under the signals for aromatic-C and phenolic-C, mainly representing lignin, increased, whereas the relative area for O-alkyl-C decreased, as the decay class advanced. The relative area under NMR chemical shift regions was significantly correlated with the chemical properties examined with proximate analyses. That is, O-alkyl-C and di-O-alkyl-C NMR signal areas were positively correlated with the volumetric density of CWD and the content of total carbohydrates. Methoxyl-C, aromatic-C, phenolic-C, carboxyl-C, and carbonyl-C were positively correlated with the contents of acid-unhydrolyzable residues (lignin, tannins, and cutin) and nitrogen. Lignin-C calculated from NMR signals increased, and polysaccharide-C decreased, with the decay class of CWD at the three study sites. A review of previous studies on 13C NMR spectroscopy for decomposing CWD suggested further needs of its application to broad-leaved trees from tropical and subtropical regions.


Baldock J.A.,PrestonC.M., 1995. Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance. In Kelly J.M., McFee W.W. (eds.) Carbon Forms and Function inForestSoils. Soil Science Society ofAmerica, WI,USA, pp. 89-117.

Baldock J.A., Oades J.M., Nelson P.N., Skene T.M., Golchin A., Clarke P., 1997. Assessing the extent of decomposition of natural organic materials using soild-state 13CNMR spectroscopy. Australian Journal of Soil Research 35: 1061-1083. DOI: 10.1071/S97004

Berg B., 1986. Nutrient release from litter and humus in coniferous forest soils - a review. Scandinavian Journal of ForestResearch 1: 359-369. DOI: 10.1080/02827588609382428

Eriksson K.E.L., Blanchette R.A., Ander P., 1990. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer, Tokyo, 407 p. DOI: 10.1007/978-3-642-46687-8

Fukasawa Y., Osono T., Takeda H., 2009. Dynamics of physicochemical properties and occurrence of fungal fruit bodies during decomposition of coarse woody debris of Fagus crenata. Journal of ForestResearch 14: 20-29. DOI: 10.1007/s10310-008-0098-0

Fukasawa Y., Osono T., Takeda H., 2011. Wood decomposing abilities of diverse lignicolous fungi on nondecayed and decayed beech wood. Mycologia 103: 474-482. DOI: 10.3852/10-246

Fukasawa Y., Osono T., Takeda H., 2012. Fungal decomposition of woody debris of Castanopsis sieboldii in a subtropical old-growth forest. Ecological Reseach 27: 211-218. DOI: 10.1007/s11284-011-0890-8

Fukasawa Y., Katsumata S., Mori A.S., Osono T., Takeda H., 2014. Accumulation and decay dynamics of coarse woody debris in an old-growth subalpine coniferous forest in Japan. Ecological Reseach 29: 257-269. DOI: 10.1007/s11284-013-1120-3

Ganjegunte G.K., Cordon L.M., ClintonP.W., DavisM.R., Mahieu N., 2004. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. ForestEcolology and Management 187: 197-211. DOI: 10.1016/S0378-1127(03)00332-3

Gilardi G., Abis L., Cass A.E.G., 1995. Carbon-13 CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation. Enzyme and Microbial Technology 17: 268-275. DOI: 10.1016/0141-0229(94)00019-N

Harmon M.E., Franklin J.F., Swanson F.J., Sollins P., Gregory S.V., Lattin J.D., Anderson N.H., Cline S.P., Aumen N.G., Sedell J.R., Lienkaemper G.W., Cromack K., Cummins K.W., 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133-302. DOI: 10.1016/S0065-2504(08)60121-X

Holub S.M., Spears J.D.H., Lajtha K., 2001. Areanalysis of nutrient dynamics in coniferous coarse woody debris. Canadian Journal of ForestResearch 31: 1894-1902. DOI: 10.1139/x01-125

Laiho R., Prescott C.E., 2004. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Canadian Journal of ForestResearch 34: 763-777. DOI: 10.1139/x03-241

Mackensen J., Bauhus J., Webber E., 2001. Decomposition rates of coarse woody debris - a review with particular emphasis on Australian tree species. Australian Journal of Botany 51: 27-37. DOI: 10.1071/BT02014

McColl J.G., Powers R.F., 1998. Decomposition of small diameter woody debris of red fir determined by nuclear magnetic resonance. Communications in Soil Science and Plant Analysis 29: 2691-2704. DOI: 10.1080/00103629809370144

Ono K., Hirai K., Morita S., Ohse K., Hiradate S., 2009. Organic carbon accumulation processes on a forest floor during an early humification stage in a temperate deciduous forest in Japan: evaluations of chemical compositional changes by 13CNMR and their decomposition rates from litterbag experiment. Geoderma 151: 351-356. DOI: 10.1016/j.geoderma. 2009.05.001

Ono K., Hiradate S., Morita S., Ohse K., Hirai K., 2011. Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant and Soil 338: 171-181. DOI: 10.1007/ s11104-010-0397-z

Ono K., Hiradate S., Morita S., Hirai K., 2013. Fate of organic carbon during decomposition of different litter types in Japan. Biogeochemistry 112: 7-21. DOI: 10.1007/s10533-011-9682-z

Osono T., 2007. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecological Research 22: 955-974. DOI: 10.1007/s11284-007-0390-z

Osono T., 2015a. Hyphal length in the forest floor and soil of subtropical, temperate, and subalpine forests. Journal of ForestResearch 20: 69-76. DOI: 10.1007/s10310-014-0461-2

Osono T., 2015b. Diversity, resource utilization, and phenology of fruiting bodies of litter-decomposing macrofungi in subtropical, temperate, and subalpine forests. Journal of ForestResearch 20: 60-68. DOI: 10.1007/s10310-014-0459-9

Osono T., Takeda H., Azuma J.I., 2008. Carbon isotope dynamics during leaf litter decomposition in a cool temperate forest with reference to lignin fractions. Ecological Research 23: 51-55. DOI: 10.1007/s11284-007-0336-5

Osono T., Azuma J.I., Hirose D., 2014. Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pine and oak forestsoils. Plant and Soil 376: 411-421. DOI: 10.1007/s11104-013-1993-5

PrestonC.M., Sollins P., Sayer B.G., 1990. Changes in organic components for fallen logs in old-growth Douglas-fir forests monitored by 13Cnuclear magnetic resonance spectroscopy. Canadian Journal of ForestResearch 20: 1382-1391. DOI: 10.1139/x90-183

PrestonC.M., Trofymow J.A., Sayer B.G., Niu J., 1997. 13Cnuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Canadian Journal of Botany 75: 1601-1613. DOI: 10.1139/b97-872

Preston C.M., Trofymow J.A., Niu J., Fyfe C.A., 1998. 13CPMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. ForestEcology and Management 111: 51-68. DOI: 10.1016/S0378-1127(98)00307-7

PrestonC.M., Trofymow J.A., Nault J.R., 2012. Decomposition and change in N and organic composition of small-diameter Douglas-fir woody debris over 23 years. Canadian Journal of ForestResearch 42: 1153-1167. DOI: 10.1139/x2012-076

Rosenberg W., Nierop K.G.J., Knicker H., De Jager P.A., Kreutzer K., Weiβ T., 2003. Liming effects on the chemical composition of the organic surface layer of a mature Norway spruce stand (Picea abies [L.] Karst.). Soil Biology & Biochemistry 35: 155-165. DOI: 10.1016/ S0038-0717(02)00250-X

Sollins P., 1982. Input and decay of coarse woody debris in coniferous stands in western Oregonand Washington. Canadian Journal of ForestResearch 12: 18-28. DOI: 10.1139/x82-003

Stokland J.N., Siitonen J., Jonsson B.G., 2012. Biodiversity in Dead Wood. CambridgeUniversityPress, Cambridge, 521 p. DOI: 10.1017/CBO9781139025843

Strukelj M., Brais S., Quideau S.A., Oh S.W., 2012. Chemical transformations of deadwood and foliar litter of mixed boreal species during decomposition. Canadian Journal of ForestResearch 42: 772-788. DOI: 10.1139/x2012-027

Strukelj M., Brais S., Quideau S.A., AngersV.A., Kebli H., Drapeau P., Oh S.W., 2013. Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Canadian Journal of ForestResearch 43: 785-798. DOI: 10.1139/cjfr-2013-0086

Takeda H., Abe T., 2001. Templates for food-habitat resources for the organization of soil animals in temperate and tropical forests. Ecological Research 16: 961-973. DOI: 10.1046/ j.1440-1703.2001.00450.x

Weedon J.T., Cornwell W.K., Cornelissen J.H.C., Zanne A.E., Wirth C., Coomes D.A., 2009. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters 12: 45-56. DOI: 10.1111/j.1461-0248.2008.01259.x

Wilson M.A., 1987. Techniques and Applications in Geoghemistry and Soil Chemistry. Pergamon Press,Oxford, 353 p.

Wilson M.A., Heng S., Goh K.M., Pugmire R.J., Grant D.M., 1983. Studies of litter and acid insoluble soil organic matter fractions using 13C-cross polarization nuclear magnetic resonance spectroscopy with magic angle spinning. Journal of Soil Science 34: 83-97. DOI: 10.1111/j.1365-2389.1983.tb00815.x


No Supplimentary Material available for this article.
No metrics available for this article.