Ågren G.I., 2008. Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. Syst. 39: 153–70. https://doi.org/10.1146/annurev.ecolsys.39.110707.173515
Amazonas N.T., Martinelli L.A., Marisa de C.P., Rodrigues R.R., 2011. Nitrogen dynamics during ecosystem development in tropical forest restoration. Forest Ecol. Manage. 262: 1551–1557. https://doi.org/10.1016/j.foreco.2011.07.003
Boddey R.M., Peoples M.B., Palmer B., Dart P.J., 2000. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in Agroecosystems 57(3): 235-270. https://doi.org/10.1023/A:1009890514844
Cleveland C.C., Houlton B.Z., Smith W.K., Marklein A.R., Running S.W., 2013. Patterns of new versus recycled primary production in the terrestrial biosphere. PNAS 110: 12733–12737. https://doi.org/10.1073/pnas.1302768110
Cui Y.P., Liu J.Y., Qin Y.C., Dong J.W., Zhang S.S., 2015. The impact of urban sprawl on heat island intensity in Beijing. Chinese Journal of Ecology 34 (12): 3485-3492.
Du B.M., Ji H.W., Peng C., Liu X., Liu C., 2017. Altitudinal patterns of leaf stoichiometry and nutrient resorption in Quercus variabilis in the Baotianman Mountains, China. Plant Soil 413: 193–202. https://doi.org/10.1007/s11104-016-3093-9
Elser J.J., Sterner R.W., Gorokhova E., Fagan W.F., Markow T.A., Cotner J.B., Harrison J.F., Hobbie S.E., Odell G.M., Weider L.W., 2010. Biological stoichiometry from genes to ecosystems. Ecol Lett 3(6): 540−550. https://doi.org/10.1046/j.1461-0248.2000.00185.x
Elser J.J, Acharya K., Kyle M., Makino W., Markow T., Watts T., Hobbie S., Fagan W., Schade J., 2003. Growth rate–stoichiometry couplings in diverse biota. Ecol Lett 6: 936–943. https://doi.org/10.1046/j.1461-0248.2003.00518.x
Güsewell S., 2004. N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist 164(2): 243-266. https://doi.org/10.1111/j.1469-8137.2004.01192.x
Güsewell S., 2005. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Funct. Ecol. 19: 344–354. https://doi.org/10.1111/j.0269-8463.2005.00967.x
Gyenge J., Fernández M.E., 2014. Patterns of resource use efficiency in relation to intraspecific competition, size of the trees and resource availability in ponderosa pine. Forest Ecol. Manage. 312: 231–238. https://doi.org/10.1016/j.foreco.2013.09.052
Hayes P., Turner B.L., Lambers H., Laliberté E., Bellingham P., 2014. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J. Ecol. 102: 396–410. https://doi.org/10.1111/1365-2745.12196
Houlton B.Z., Ying P.W., Vitousek P.M., Field C.B., 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454: 327-330. https://doi.org/10.1038/nature07028
Kobe R.K., Lepczyk C.A., Iyer M., 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86: 2780–2792. https://doi.org/10.1890/04-1830
Koerselman W, Meuleman A.F.M., 1996. The vegetation N:P ration: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33(6): 1441-1450. https://doi.org/10.2307/2404783
Killingbeck K.T., 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716–1727. https://doi.org/10.2307/2265777
Liu Q.M., Wu L.J., Jia S.P., Na Z., Jing Z., Liu B., Qiang F., 2015. Effects of thinned plantation in green passageway of Beijing plain on growth of trees. Protection Forest Science and Technology 155(5): 12-15.
Luyssaert S., Staelens J., De Schrijver A., 2005. Does the commonly used estimator of nutrient resorption in tree foliage actually measure what it claims to? Oecologia 144: 177–186. https://doi.org/10.1007/s00442-005-0085-5
Paul K.I., Polglase P.J., Nyakuengama J.G., Khanna P.K., 2002. Change in soil carbon following afforestation. Forest Ecol. Manage. 168(1-3): 241-257. https://doi.org/10.1016/S0378-1127(01)00740-X
Pugnaire F.I., Chapin III F.S., 1993. Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology 74(1): 124−129. https://doi.org/10.2307/1939507
Reich P.B., Oleksyn J., 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101(30): 11001−11006. https://doi.org/10.1073/pnas.0403588101
Rejmánková E., 2005. Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status. New Phytol. 167: 471–482. https://doi.org/10.1111/j.1469-8137.2005.01449.x
Reed S.C., Townsend A.R., Davidson E.A., Cleveland C.C., 2012. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytol. 196: 173–180. https://doi.org/10.1111/j.1469-8137.2012.04249.x
Schreeg L.A., Santiago L.S., Wright S.J., Turner B.L., 2014. Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology 95: 2062–2068. https://doi.org/10.1890/13-1671.1
Sterner R.W., Elser J.J., 2002. Ecological stoichiometry: The biology of elements from molecules to the biosphere [M]. Princeton, N.J.: Princeton University Press.
Sun Z.Z., Liu L.L., Peng S.S., 2016. Age-related modulation of the nitrogen resorption efficiency response to growth requirements and soil nitrogen availability in a temperate pine plantation. Ecosystems 19: 698–709. https://doi.org/10.1007/s10021-016-9962-5
Tessier J.T., Raynal D.J., 2003. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology 40: 523-534. https://doi.org/10.1046/j.1365-2664.2003.00820.x
Vergutz L., Manzoni S., Porporato A., Novais R.F., Jackson R.B., 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr 82: 205–220. https://doi.org/10.1890/11-0416.1
Vitousek P.M., 2003. Stoichiometry and flexibility in the Hawaiian model system. In: Melillo J.M., Field C.B., Moldan B. (eds.) Scope 61: Interactions of the major biogeochemical cycles: global change and human impacts. Washington DC: Island Press: 117-134.
Vitousek P.M., Turner D.R., Parton W.J., Sanford R.L., 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawai’i: patterns, mechanisms, and models. Ecology 75(2): 418−429. https://doi.org/10.2307/1939545
Wang C., Jia B.Q., Qie G.F., 2017. Effect and development countermeasures of Beijing plain afforestation. Journal of Chinese Urban Forestry 15(06): 6-11.
Wang Z., Lu J., Yang M., Yang H., Zhang Q., 2015. Stoichiometric characteristics of carbon, nitrogen, and phosphorus in leaves of differently aged Lucerne (Medicago sativa) stands. Front. Plant Sci. 6, 1062. https://doi.org/10.3389/fpls.2015.01062
Yan B.G., Liu G.C., Fan B., 2015. Relationships between plant stoichiometry and biomass in an arid-hot valley, Southwest China. Chinese Journal of Plant Ecology 39(8): 807−815.
Yan T., Lü X.T., Zhu J.J., Yang K., Yu L.Z., Gao T., 2017. Changes in nitrogen and phosphorus cycling suggest a transition to phosphorus limitation with the stand development of larch plantations. Plant Soil 422: 385–396.
Zhang L., Yan E.R., Wei H.X., 2014. Leaf nitrogen resorption proficiency of seven shrubs across timberline ecotones in the Sergymla Mountains, Southeast Xizang. Chinese Journal of Plant Ecology 38(12): 1325−1332.
Yao Z., Baitian W., Meng, L.I., Xu H.W., Xiu Q.D., 2018. Ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus in three forests in the Lüliang Mountainous Area of Shanxi Province. Chinese Journal of Applied and Environmental Biology 24(3): 518−524.
Zheng Y.L., Wang H.Y., Xie Y.L., Li X., 2018. Effect of tree species on soil fertility quality in plain afforestation area, Beijing. Science of Soil and Water Conservation 16(06): 89-98.
Zhu J.T., Li X.Y., Zhang X.M., Lin L.S., Yang S.G., 2010. Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert. Chinese Journal of Plant Ecology 34(9): 1025−1032. DOI: 10.3773/j.issn.1005-264x.2010.09.003