Review article

Interspecific gene flow and maintenance of species integrity in oaks

Oliver Gailing, Alexandru Lucian Curtu

Oliver Gailing
Michigan Technological University, 1400 Townsend Drive, 49931 Houghton, MI, United States
Alexandru Lucian Curtu
University of Transilvania Brasov, Dept. of Forest Sciences, Sirul Beethoven - 1, Brasov - 500 123, Romania. Email: na@na.com

Online First: April 07, 2014
Gailing, O., Curtu, A. 2014. Interspecific gene flow and maintenance of species integrity in oaks. Annals of Forest Research DOI:10.15287/afr.2014.171


Oak species show a wide variation in morphological and physiological characters, and species boundaries between closely related species are often not clear-cut. Still, despite frequent interspecific gene flow, oaks maintain distinct morphological and physiological adaptations. In sympatric stands, spatial distribution of species with different ecological requirements is not random but constrained by soil and other microenvironmental factors. Pre-zygotic isolation (e.g. cross incompatibilities, asynchrony in flowering, pollen competition) and post-zygotic isolation (divergent selection) contribute to the maintenance of species integrity in sympatric oak stands. The antagonistic effects of interspecific gene flow and divergent selection are reflected in the low genetic differentiation between hybridizing oak species at most genomic regions interspersed by regions with signatures of divergent selection (outlier regions). In the near future, the availability of high-density genetic linkage maps anchored to scaffolds of a sequenced Q. robur genome will allow to characterize the underlying genes in these outlier regions and their putative role in reproductive isolation between species. Reciprocal transplant experiments of seedlings between parental environments can be used to characterize selection on outlier genes. High transferability of gene-based markers will enable comparative outlier screens in different oak species.


Abbott, R., Albach D., Ansell S., Arntzen J.W., Baird S.J. E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., Butlin R.K., Dieckmann U., Eroukhmanoff F., Grill A., Cahan S.H., Hermansen J.S., Hewitt G., Hudson A.G., Jiggins C., Jones J., Keller B., Marczewski T., Mallet J., Martinez-Rodriguez P., Möst M., Mullen S., Nichols R., Nolte A.W., Parisod C., Pfennig K., Rice A.M., Ritchie M.G., Seifert B., Smadja C.M., Stelkens R., Szymura J.M., Väinölä R., Wolf J.B.W., Zinner D., 2013. Hybridization and speciation. Journal of Evolutionary Biology 26: 229-246. DOI:10.1111/j.1420-9101.2012. 02599.x.

Abraham S.T., Zaya D.N., Koenig W.D., Ashley M.V., 2011. Interspecific and intraspecific pollination patterns of valley oak, Quercus lobata, in a mixed stand in coastal central California. International Journal of Plant Sciences 172: 691- 699. DOI:10.1086/659646.

Abrams M.D., 1990. Adaptations and responses to drought in Quercus species of North-America. Tree Physiology 7: 227-238. DOI: 10.1093 /treephys/7.1-2-3-4.227.

Aldrich P., Cavender-Bares J., 2011. Quercus. Pages 89-129 inC. Kole, editor. Wild crop relatives: Genomic and breeding resources, forest trees. Springer, Berlin. DOI:10.1007/978-3-642-21250-5_6.

AndersonE.C., Thompson E.A.,2002. Amodel-based method for identifying species hybrids using multilocus genetic data. Genetics 160: 1217-1229.

ArnoldM.L., 2004. Transfer and origin of adaptations through natural hybridization: Were Anderson and Stebbins right? Plant Cell 16: 562-570. DOI:10.1105/tpc.160370.

ArnoldM.L., Martin N.H., 2011. Hybrid fitness across time and habitats. Trends in Ecology & Evolution 25: 530-536. DOI: 10.1016/ j.tree.2010.06.005.

Ávila F.A., Ángel S.P., López C.R., 2010. Diversity and structure of an oak community in the Cachalú Biological Reserve, Encino (Santander-Colombia). RevistaColombiaForestal 13: 87-116.

Bacilieri R., Ducousso A., Kremer A., 1995. Genetic, morphological, ecological and phenological differentiation between Quercus petraea (Matt.) Liebl. and Quercus robur L. in a mixed stand of Northwest of France. Silvae Genetica 44: 1-10.

Bacilieri R., Ducousso A., Petit R.J., Kremer A., 1996. Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution 50: 900-908. DOI:10.2307/2410861.

Baird N. A., Etter P. D., Atwood T.S., Currey M.C., Shiver A.L., Lewis Z.A., Selker E.U., Cresko W.A., Johnson E.A., 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. Plos One 3.

BartonN.H., 2001. The role of hybridization in evolution. Molecular Ecology 10: 551-568. DOI:10.1046/j.1365-294x.2001.01216.x.

Boavida L.C., Silva J.P., Feijo J.A., 2001. Sexual reproduction in the cork oak (Quercus suber L). - II. Crossing intra- and interspecific barriers. Sexual Plant Reproduction 14: 143-152. DOI:10.1007/s004970100100.

Bodénès C., Chancerel E., Gailing O., Vendramin G.G., Bagnoli F., Durand J., Goicoechea P.G., Soliani C., Villani F., Mattioni C., Koelewijn H.P., Murat F., Salse J., Roussel G., Boury C., Alberto F., Kremer A., Plomion C., 2012. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biology 12: 153. DOI:10.1186/1471-2229-12-153.

Bodénès C., Joandet S., Laigret F., Kremer A., 1997. Detection of genomic regions differentiating two closely related oak species Quercus petraea (Matt.) Liebl. and Quercus robur L. Heredity 78: 433-444. DOI:10.1038/hdy.1997.67.

BredaN., Cochard H., Dreyer E., Granier A., 1993. Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Q. robur under water-stress. Annales des Sciences Forestières 50: 571-582. DOI:10.1051/forest:19930606.

Brendel O., Le Thiec D., Scotti-Saintagne C., Bodénès C., Kremer A., Guehl J.-M., 2008. Quantitative Trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genetics and Genomes 4: 263-278. DOI:10.1007/s11295-007-0107-z.

Burns R.M., Honkala B.H., 1990. Silvics of North America, Washington, DC.

Chybicki I.J., Burczyk J., 2013. Seeing the forest through the trees: comprehensive inference on individual mating patterns in a mixed stand of Quercus robur and Q. petraea. Annals of Botany 112: 561-574. DOI:10.1093/aob/mct131.

Coart E., Lamote V., De Loose M., Van Bockstaele E., Lootens P., Roldan-Ruiz I., 2002. AFLP markers demonstrate local genetic differentiation between two indigenous oak species Quercus robur L. and Quercus petraea (Matt.) Liebl in Flemish populations. Theoretical and Applied Genetics 105: 431-439. DOI:10.1007/s00122-002-0920-6.

Cochard H., BredaN., Granier A., Aussenac G., 1992. Vulnerability to air-embolism of 3 European oak species (Quercus petraea (Matt.) Lieb.l, Quercus pubescens Willd., Q. robur L.) Annales des Sciences Forestières 49: 225-233. DOI:10.1051/forest:19920302.

Cottam W.P., Tucker J.M., Santamour Jr. F.S., 1982. Oak hybridization at the University of Utah. State Arboretum of Utah, University of Utah.

Craft K.J., Ashley M.V., 2006. Population differentiation among three species of white oak in northeastern Illinois. Canadian Journal of Forest Research 36: 206-215. DOI:10.1139/x05-234.

Craft K.J., Ashley M.V., Koenig W.D., 2002. Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. American Journal of Botany 89: 1792-1798. DOI:10.3732/ajb.89.11.1792.

Curtu A.-L., 2006. Patterns of genetic variation and hybridization in a mixed oak (Quercus spp.) forest. Cuvillier Verlag, Göttingen.

Curtu A.L., Gailing O., Finkeldey R., 2007a. Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology 7: 218. DOI:10.1186/1471-2148-7-218.

Curtu A.L., Gailing O., Finkeldey R., 2009. Patterns of contemporary hybridization inferred from paternity analysis in a four-oak-species forest. BMC Evolutionary Biology 9: 284. DOI:10.1186/1471-2148-9-284.

Curtu A.L., Gailing O., Leinemann L., Finkeldey R., 2007b. Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Plant Biology 9: 116-126. DOI:10.1055/s-2006-924542.

Curtu A.L., Moldovan I.C., Enescu C.M., Craciunesc I., Sofletea N., 2011a. Genetic Differentiation between Quercus frainetto Ten. and Q. pubescens Wild. inRomania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39: 275-282.

Curtu A.L., Sofletea N., Toader A.V., Enescu M.C., 2011b. Leaf morphological and genetic differentiation between Quercus robur L. and its closest relative, the drought tolerant Quercus pedunculiflora K. Koch. Annals of Forest Science 68: 1163-1172. DOI:10.1007/s13595-011-0105-z.

de Heredia U.L., Valbuena-Carabana M., CordobaM., Gil L., 2009. Variation components in leaf morphology of recruits of two hybridising oaks Q. petraea (Matt.) Liebl. and Q. pyrenaica Willd. at small spatial scale. European Journal of Forest Research 128: 543-554. DOI:10.1007/s10342-009-0302-6.

Dodd R.S., Afzal-Rafii Z., 2004. Selection and dispersal in a multispecies oak hybrid zone. Evolution 58: 261-269. DOI:10.1554/03-288.

Durand J., Bodénès C., Chancerel E., Frigero J.-M., Vendramin G.G., Sebastiani F., Buonamici A., Gailing O., Koelewijn H.-P., Villani F., Mattioni C., Cherubini M., Goicoechea P.G., Herran A., Ikaran Z., Cabane C., Ueno S., de Daruvar A., Kremer A., Plomion C., 2010. Afast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC genomics 11: 570. DOI:10.1186/1471-2164-11-570.

EllstrandN.C., Whitkus R., Rieseberg L. H., 1996. Distribution of spontaneous plant hybrids. Proceedings of the NationalAcademyof Sciences of the United States of America93: 5090-5093. DOI:10.1073/pnas.93.10.5090.

Faivre Rampant P., Lesur I., Boussardon C., Bitton F., Martin-Magniette M., Bodenes C., Le Provost G., Berges H., Fluch S., Kremer A., Plomion C., 2011. Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome. BMC genomics 12: 292. DOI:10.1186/1471-2164-12-292.

Finkeldey R., 2001. Genetic variation of oaks (Quercus spp.) inSwitzerland. 1. Allelic diversity and differentiation at isozyme gene loci.ForestGenetics 8: 185-195.

Gailing O., 2008. QTL analysis of leaf morphological characters in a Quercus robur full-sib family (Q. robur x Q. robur ssp. slavonica). Plant Biology 10: 624-634. DOI:10.1111/j.1438-8677.2008.00063.x.

Gailing O., Bodénès C., Finkeldey R., Kremer A., Plomion C., 2013. Genetic mapping of EST-derived Simple Sequence Repeats (EST-SSRs) to identify QTL for leaf morphological characters in a Quercus robur full-sib family. Tree Genetics & Genomes 9: 1361-1367. DOI:10.1007/s11295-013-0633-9.

Gailing O., Langenfeld-Heyser R., Polle A., Finkeldey R., 2008. Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments. Global Change Biology 14: 1934-1946. DOI:10.1111/j.1365-2486.2008.01621.x.

Gailing O., Lind J., Lilleskov E.A., 2012. Leaf morphological and genetic differentiation between Quercus rubra L. and Q. elliposidalis E. J. Hill populations in contrasting environments. Plant Systematics and Evolution 298: 1533-1545. DOI:10.1007/s00606-012-0656-y.

Goicoechea P.G., Petit R.J., Kremer A., 2012. Detecting the footprints of divergent selection in oaks with linked markers. Heredity 109: 361-371. DOI:10.1038/hdy.2012.51.

Guichoux E., Garnier-Gere P., Lagache L., Lang T., Boury C., Petit R. J., 2013. Outlier loci highlight the direction of introgression in oaks. Molecular Ecology 22: 450-462. DOI:10.1111/mec.12125.

Hipp A.L.,Weber J.A., 2008. Taxonomy of Hill's oak (Quercus ellipsoidalis: Fagaceae): Evidence from AFLP data. Systematic Botany 33: 148-158. DOI:10.1600/036364408783887320.

Jensen J., Larsen A., Nielsen L. R., Cottrell J., 2009. Hybridization between Quercus robur and Q. petraea in a mixed oak stand in Denmark. Annals of ForestScience 66: 12.DOI:10.1051/forest/2009058.

Jensen R.J., Hokanson S.C., Isebrands J.G., Hancock J.F., 1993. Morphometric variation in oaks of the apostle islands in Wisconsin- evidence of hybridization between Quercus rubra and Q. ellipsoidalis (Fagaceae). American Journal of Botany 80: 1358- 366. DOI:10.2307/2445721.

Kleinschmit J., Kleinschmit J.R.G., 2000. Quercus robur - Q. petraea: a critical review of the species concept. Glasnik Za sumske Pokuse 37: 441-452.

Kleinschmit J.R.G., Bacilieri R., Kremer A., Roloff A., 1995. Comparison of morphological and genetic traits of pedunculate oak (Quercus robur L.) and sessile oak (Q. petraea (Matt.) Liebl.). Silvae Genetica 44: 256-269.

Kremer A., Dupouey J.L., Deans J.D., Cottrell J., Csaikl U., Finkeldey R., Espinel S., Jensen J., Kleinschmit J., Van Dam B., Ducousso A., Forrest I., Lopez de Heredia U., Lowe A.J., Tutkova M., Munro R.C., Steinhoff S., Badeau V., 2002. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annals of ForestScience 59: 777-787. DOI:10.1051/forest:2002065.

Lagache L., Klein E.K., Guichoux E., Petit R.J., 2013. Fine-scale environmental control of hybridization in oaks. Molecular Ecology 22: 423-436. DOI:10.1111/mec.12121.

Lepais O., Gerber S., 2011. Reproductive patterns shape introgression dynamics and species succession within the European white oak complex. Evolution 65: 156-170. DOI:10.1111/j.1558 5646.2010.01101.x.

Lepais O., Petit R.J., Guichoux E., Lavabre J.E., Alberto F., Kremer A., Gerber S., 2009. Species relative abundance and direction of introgression in oaks. Molecular Ecology 18: 2228-2242. DOI:10.1111/j.1365-294X.2009.04137.x.

Lepais O., Roussel G., Hubert F., Kremer A., Gerber S., 2013. Strength and variability of postmating reproductive isolating barriers between four European white oak species. Tree Genetics & Genomes 9: 841-853. DOI:10.1007/s11295-013-0602-3.

Levin D.A., Francisco-Ortega J., Jansen R.K., 1996. Hybridization and the extinction of rare plant species. Conservation Biology 10: 10-16. DOI:10.1046/j.1523-1739.1996.10010010.x.

Lind J., Gailing O., 2013. Genetic structure of Quercus rubra L. and Q. ellipsoidalis E.J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genetics & Genomes 31: 231-239.

Lind-Riehl J., Sullivan A., Gailing O., 2014. Evidence for selection on a CONSTANS-like gene between two red oak species. Annals of Botany - doi 10.1093/aab/mcu 019.

Manos P.S., Doyle J.J., Nixon K.C., 1999. Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Molecular Phylogenetics and Evolution 12: 333-349. DOI:10.1006/mpev.1999.0614.

Manos P.S., Stanford A.M., 2001. The historical biogeography of Fagaceae: Tracking the tertiary history of temperate and subtropical forests of the Northern Hemisphere. International Journal of Plant Sciences 162 (6 Suppl): S77-S93. DOI:10.1086/323280.

Mariette S., Cottrell J., Csaikl U.M., Goikoechea P., König A.O., Lowe A.J., Van Dam B.C., Barreneche T., Bodénès C., Streiff R., Burg K., Groppe K., Munro R.C., Tabbener H., Kremer A., 2002. Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genetica 51: 72-79.

Mayr E., 1942. Systematics and the origin of species. Columbia University Press, New York.

McShea W.J., Healy W.M., Devers P., Fearer T., Koch F.H., Stauffer D., Waldon J., 2007. Forestry matters: Decline of oaks will impact wildlife in hardwood forests. Journal of Wildlife Management 71: 1717-1728. DOI:10.2193/2006-169.

Moran E.V., Willis J., ClarkJ.S., 2012. Genetic evidence for hybridization in red oaks (Quercus Sect. Lobatae, Fagaceae). American Journal of Botany 99: 92-100. DOI:10.3732/ajb.1100023.

Muir G., Schlötterer C., 2005. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridising oaks (Quercus spp.). Molecular Ecology 14: 549-561. DOI:10.1111/j.1365-294X.2004.02418.x.

Müller-Starck G., 1985. Genetic differences between "tolerant" and "sensitive" beeches (Fagus sylvatica L.) in an environmentally stressed adult forest stand. Silvae Genetica 34: 241-247.

Neale D.B., Kremer A., 2011. Foresttree genomics: growing resources and applications. Nature Reviews Genetics 12: 111-122. DOI:10.1038/nrg2931.

Neophytou C., Aravanopoulos F.A., Fink S., Dounavi A., 2011. Interfertile oaks in an island environment. II. Limited hybridization between Quercus alnifolia Poech and Q. coccifera L. in a mixed stand. European Journal of Forest Research 130: 623-635. DOI: 10.1007/ s10342-010-0454-4.

Nixon K.C., 1993. Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Annales des Sciences Forestières 50, Suppl 1: 25s-34s .DOI:10.1051/forest:19930701.

OlrikD.C., Kjaer E.D., 2007. The reproductive success of a Quercus petraea x Q. robur F1-hybrid in back-crossing situations. Annals of ForestScience 64: 37-45.DOI:10.1051/forest:2006086.

Parelle J., Zapater M., Scotti-Saintagne C., Kremer A., Jolivet Y., Dreyer E., Brendel O., 2007. Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns. Plant, Cell and Environment 30: 422-434. DOI:10.1111/j.1365-3040.2006.01629.x.

Petit R., Csaikl U., Bordács S., Burg K., Coart E., Cottrell J., van Dam B., Deans D., Dumolin-Lapègue S., Fineschi S., Finkeldey R., Gillies A., Glaz I., Goicoechea P.G., Jensen J.S., König A.O., Lowe A.J., Madsen S.F., Mátyás G., Munro R.C., Olalde M., Pemonge M.-H., Popescu F., Slade D., Tabbener H., Taurchini D., de Vries S.G.M., Ziegenhagen B., Kremer A., 2002. Chloroplast DNA variation in European white oaks. Phylogeography and patterns of diversity based on data from over 2600 populations. ForestEcology and Management 156: 5-26. DOI:10.1016/S0378-1127(01)00645-4.

Petit R.J., Bodénès C., Ducousso A., Roussel G., Kremer A., 2003. Hybridization as a mechanism of invasion in oaks. New Phytologist 161: 151-164. DOI:10.1046/j.1469-8137.2003.00944.x.

Pritchard J.K., Stephens M., Donnelly P., 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Rieseberg L.H., 1995. The role of hybridization in evolution: old wine in new skins. American Journal of Botany 82: 944-953. DOI: 10.2307 /2445981.

Rushton B.S., 1993. Natural hybridization within the genus Quercus. Annales des Sciences Forestières 50: 73s-90s. DOI: 10.1051 /forest:19930707.

Saintagne C., Bodénès C., Barreneche T., Pot D., Plomion C., Kremer A., 2004. Distribution of genomic regions differentiating oak species assessed by QTL detection. Heredity 92: 20-30. DOI: 10.1038 /sj.hdy.6800358.

Scotti-Saintagne C., Bodénès C., Barreneche T., Bertocchi E., Plomion C., Kremer A., 2004a. Detection of Quantitative Trait Loci controlling bud burst and height growth in Quercus robur L. Theoretical and Applied Genetics 109: 1648-1659. DOI:10.1007/s00122-004-1789-3.

Scotti-Saintagne C., Mariette S., Porth I., Goicoechea P. G., Barreneche T., Bodénès C., Burg K., Kremer A., 2004b. Genome scanning of interspecific differentiation between two closely related oak species (Quercus robur L. and Q. petraea (Matt.) Liebl.). Genetics 168: 1615-1626. DOI:10.1534/genetics.104.026849.

Sexton J.P., Hangartner S.B., Hoffmann A.A., 2014. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68: 1-15. DOI:10.1111/evo.12258.

Slatkin M., 1987. Gene flow and the geographic structure of natural populations. Science 236: 787-792. DOI:10.1126/science.3576198.

Sork V.L., Stowe K.A., Hochwender C., 1993. Evidence for local adaptation in closely adjacent subpopulations of northern red oak (Quercus rubra L.) expressed as resistance to leaf herbivores. American Naturalist 142: 928-936. DOI:10.1086/285581.

Steinhoff S., 1993. Results of species hybridization with Quercus robur L. and Quercus petraea (Matt) Liebl. Annales des Sciences Forestières 50: 137s-143s. DOI:10.1051/forest:19930713.

Steinhoff S., 1998. Kontrollierte Kreuzungen zwischen Stiel- und Traubeneiche: Ergebnisse und Folgerungen. Allgemeine Forst- und Jagdzeitung 169: 163-168.

Strasburg J.L., Sherman N.A., Wright K.M., Moyle L.C., Willis J.H., Rieseberg L.H., 2012. What can patterns of differentiation across plant genomes tell us about adaptation and speciation? Philosophical Transactions of the Royal Society B-Biological Sciences 367: 364-373. DOI:10.1098/rstb.2011.0199.

Streiff R., Ducousso A., Lexer C., Steinkellner H., Gloessl J., Kremer A., 1999. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Quercus petraea (Matt.) Liebl. Molecular Ecology 8: 831-842. DOI:10.1046/j.1365-294X.1999. 00637.x.

Sullivan A., Lind J., McCleary T.S., Romero-Severson J., Gailing O., 2013. Development and characterization of genomic and gene-based microsatellite markers in North American red oak species. Plant Molecular Biology Reporter 31: 231-239. DOI:10.1007/s11105-012-0495-6.

Ueno S., Klopp C., Leple J.C., Derory J., Noirot C., Leger V., Prince E., Kremer A., Plomion C., Le Provost G., 2013. Transcriptional profiling of bud dormancy induction and release in oak by next-generation sequencing. BMC genomics 14.

Ueno S., Le Provost G., Leger V., Klopp C., Noirot C., Frigerio J.M., Salin F., Salse J., Abrouk M., Murat F., Brendel O., Derory J., Abadie P., Leger P., Cabane C., Barre A., de Daruvar A., Couloux A., Wincker P., Reviron M.P., Kremer A., Plomion C., 2010. Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. BMC genomics 11: 24. DOI:10.1186/1471-2164-11-650.

Valbuena-Carabana M., Gonzalez-MartinezS.C., Hardy O.J., Gil L., 2007. Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Molecular Ecology 16: 1207- 1219. DOI: 10.1111/j.1365-294X.2007.03231.x.

Van Valen L., 1976. Ecological species, multispecies and oaks. Taxon 25: 233-239. DOI:10.2307/1219444.

Via S., 2009. Natural selection in action during speciation. Proceedings of the NationalAcademyof Sciences of the United States of America106: 9939-9946. DOI:10.1073/pnas.0901397106.

Via S., 2012. Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-gene-flow. Philosophical Transactions of the Royal Society B-Biological Sciences 367: 451-460. DOI:10.1098/rstb.2011.0260.

Vidalis A., Curtu A.L., Finkeldey R., 2013. Novel SNP development and analysis at a NADP+-specific IDH enzyme gene in a four species mixed oak forest. Plant Biology 15: 126-137. DOI:10.1111/j.1438-8677.2012.00575.x.

Viscosi V., Antonecchia G., Lepais O., Fortini P., Gerber S., Loy A., 2012. Leaf shape and size differentiation in white oaks: assessment of allometric relationships among three sympatric species and their hybrids. International Journal of Plant Sciences 173: 875-884. DOI:10.1086/667234.

Whittemore A.T., Schaal B.A., 1991. Interspecific gene flow in sympatric oaks. Proceedings of the NationalAcademyof Sciences of the United States of America88: 2540-2544. DOI: 10.1073/pnas. 88.6.2540.

Williams J.H., Boecklen W.J., Howard D.J., 2001. Reproductive processes in two oak (Quercus) contact zones with different levels of hybridization. Heredity 87: 680-690.DOI:10.1046/j.1365-2540.2001.00968.x.

Wright, S. 1943. Isolation by distance. Genetics 28:114-138.

Yucedag C., Gailing O., 2013. Morphological and genetic variation within and among four Quercus petraea and Q. robur natural populations. Turkish Journal of Botany 37: 619-629.

Zanetto A., Roussel G., Kremer A., 1994. Geographic variation of inter-specific differentiation between Quercus robur L. and Quercus petraea (Matt.) Liebl.ForestGenetics 1: 111-123.

Zeng Y.F., Liao W.J., Petit R.J., Zhang D.Y., 2011. Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation. Molecular Ecology 20: 4995-5011. DOI:10.1111/j.1365-294X.2011.05354.x.


No Supplimentary Material available for this article.
No metrics available for this article.

Related Articles

Related Authors

 



In Google Scholar

In Annals of Forest Research

In Google Scholar

 
  • Oliver Gailing
  • Alexandru Lucian Curtu
  • Oliver Gailing
  • Alexandru Lucian Curtu