Research article

Genetic diversity and structure of Silver fir (Abies alba Mill.) at the south-eastern limit of its distribution range

Maria Teodosiu , Georgeta Mihai, Barbara Fussi, Elena Ciocîrlan

Maria Teodosiu
National Institute for Research and Developmet in Forestry “Marin Drăcea”, Câmpulung Moldovenesc Research Station, Calea Bucovinei 73bis, 725100 Câmpulung Moldovenesc, Suceava, România. Email: teodosiumaria@yahoo.com
Georgeta Mihai
National Institute for Research and Development in Forestry “Marin Drăcea”, Voluntari, 128 Eroilor Boulevard, 077190 Ilfov, România
Barbara Fussi
Bavarian Office for Forest Genetics, Country Forstamts platz 1, 83317 Teisendorf. Germany
Elena Ciocîrlan
Department of Forest Sciences, Transilvania University of Brașov, Șirul Beethoven 1, 500123 Brașov, România

Online First: November 26, 2019
Teodosiu, M., Mihai, G., Fussi, B., Ciocîrlan, E. 2019. Genetic diversity and structure of Silver fir (Abies alba Mill.) at the south-eastern limit of its distribution range. Annals of Forest Research DOI:10.15287/afr.2019.1436


In the Romanian Carpathians, Silver fir covers about 5% of the forest area and is the second most important conifer species. Although there are a number of genetic studies concerning the distribution of genetic diversity of Abies alba in Europe, populations from the south-eastern limit of the distribution range have been studied less. The aim of the present study was to assess the genetic diversity and differentiation in 36 silver fir populations along the Carpathian Mountains in Romania, using seven microsatellites loci. High levels of genetic diversity (He = 0.779 to 0.834 and AR = 11.61 to 14.93) were found in all populations. Eastern Carpathians populations show higher levels of diversity, both in allelic richness and expected heterozygosity and higher degrees of genetic differentiation compared to southern populations. Bayesian clustering analysis revealed the existence of two genetically distinct groups for silver fir populations, one larger cluster which comprises the Inner Eastern Carpathians, Curvature Carpathians, South Carpathians and the Banat Mountains and the second cluster contained most of the North and Outer Eastern Carpathians population. Both AMOVA and Barrier analysis supported genetic differentiation among geographical provenance regions. The high genetic diversity of silver fir populations from the eastern limit of its distribution provide high potential to mitigate the negative effects of climate warming being valuable genetic resources in the context of global change. The distribution pattern of genetic variation at local, regional and country scale could and should be considered for the preservation of the forest genetic resources.


Babicki S, Arndt D, Marcu A, Liang Y, Grant J.R, Maciejewski A, Wishart D.R.(2016). Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016 May 17 (epub ahead of print). DOI: 10.1093/nar/gkw419

Barbu I., Barbu C., 2005. Silver fir (Abies alba Mill.) in Romania. Editura Tehnică Silvică , 220 p.

Barbu I., Curcă M., Ichim V., Barbu C., 2015. Changes in the forest cover of Bukowina between 1775 and 2012. Revista de Silvicultură și Cinegetică Anul XX (37): 19-30.

Belletti P., Ferrazzini D., Ducci F., De Rogatis A., Mucciarelli M., 2017. Genetic diversity of Italian populations of Abies alba. Dendrobiology 77: 147-159. DOI: 10.12657/denbio.077.012

Bosela M., Lukac M., Castagneri D., Sedmák R., Biber P., Carrer M., Konôpka B., Nola P., Nagel T.A., Popa I., Roibu C.C., Svoboda M., Trotsiuk V., Büntgen U., 2018. Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Sci Total Environ 615:1460-1469. DOI: 10.1016/j.scitotenv.2017.09.092

Cheddadi R., Birks H. J. B., Tarroso P., Liepelt S., Gömöry D., Dullinger S., Meier E.S., Hülber K., Maiorano L., Laborde H., 2014. Revisiting tree-migration rates: Abies alba (Mill.), a case study. Veget Hist Archaeobot 23:113-122. DOI: 10.1007/s00334-013-0404-4

Ciocîrlan E., Sofletea N., Ducci F., Curtu A.L., 2017. Patterns of genetic diversity in European beech (Fagus sylvatica L.) at the eastern margins of its distribution range. iForest 10(6): 916-922. DOI: 10.3832/ifor2446-010

Cremer E, Liepelt S, Sebastiani F, Buonamici A, Michalczyk M, Ziegenhagen B, Vendramin GG, (2006). Identification and characterization of nuclear microsatellitesloci in Abies alba Mill..Molecular Ecology Notes 6: 374-376. DOI: 10.1111/j.1471-8286.2005.01238.x

Diaconeasa B., Fărcaş S., 2001. Istoricul brădetelor din România, descifrat prin metoda polen-analitică. Studia Univ. "Babeş-Bolyai", Biol. 3-20.

Dieringer D., Schlötterer C., 2003. Microsatelliteanalyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3: 167-169. DOI: 10.1046/j.1471-8286.2003.00351.x

Dumolin S, Demersure B, Petit RJ (1995).Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics 91: 1235-1256. DOI: 10.1007/BF00220937

Duncan S.I., Crespi E.J., Mattheus N.M., Rissler L.J., 2015. History matters more when explaining genetic diversity within the context of the core-periphery hypothesis. Molecular Ecology. DOI: 10.1111/mec.13315

Eckert C.G., Samis K.E., Lougheed S.C., 2008. Genetic variation across species geographical ranges, the central-marginal hypothesis and beyond. Molecular Ecology 17: 1170-1188. DOI: 10.1111/j.1365-294X.2007.03659.x

Eckert C.G., Samis K.E., Lougheed S.C., 2008. Genetic variation across species geographical ranges: the central-marginal hypothesis and beyond. Molecular Ecology 17: 1170-1188. DOI: 10.1111/j.1365-294X.2007.03659.x

Fărcaş S., Tanţău I., Bodnariuc A., Feurdean A., 2007. L'histoire des forets et du paléoclimat Holocène dans les Monts Apuseni. Contribuţii Botanice 42 (1): 115-126.

Fărcaș S., Tanțău I., Mândrescu M., Hurdu B., 2013. Holocene vegetation history in the Maramureș Mountains (Northern Romanian Carpathians). Quaternary International 293: 92-104. DOI: 10.1016/j.quaint.2012.03.057

Feurdean A., Willis K.J., 2008: Long-term variability of Abies alba in NW Romania: Implications for its conservation management. Diversity and Distributions 14: 1004-1017. DOI: 10.1111/j.1472-4642.2008.00514.x

Feurdean A., Tanțău I., 2017. The Evolution of Vegetation from the Last Glacial Maximum Until the Present. In: Radoane M., Vespremeanu-Stroe A., (ed.): Landform Dynamics and Evolution in Romania. Springer International Publishing Switzerland. DOI: 10.1007/978-3-319-32589-7_4

Francis R. M, (2016). "POPHELPER: An R package and web app to analyse and visualise population structure." Molecular Ecology Resources. DOI: 10.1111/1755-0998.12509

Gömöry D., Paule L., Krajmerova D., Romšaková I., Longauer R., 2012. Admixture of genetic lineages of different glacial origin: a case study of Abies alba Mill. in the Carpathians.Plant Systematics and Evolution 298 (4):703-712. DOI: 10.1007/s00606-011-0580-6

Goudet J (1995). FSTAT (Version 1.2): a computer program to calculate F-statistic. Journal of Heredity 86: 485-486. DOI: 10.1093/oxfordjournals.jhered.a111627

Gubler M., Henne P.D., Schworer C., Boltshauser-Kaltenrieder P., Lotter A.F., Bronnimann S., Tinner W., 2018. Microclimatic gradients provide evidence for a glacial refugium for temperate trees in a sheltered hilly landscape of Northern Italy. J Biogeogr 45(11):2564-2575. DOI: 10.1111/jbi.13426

Gy Tóth E., Vendramin G.G., Bagnoli F., Cseke K., Höhn M., 2017. High genetic diversitz and distinct origin of recentlz fragmented Scots pine (Pinus sylvestris L.) populations along the Carphatians and the Pannonian Basin. Tree Genetics & Genomes 13: 47. DOI: 10.1007/s11295-017-1137-9

Hampe A., Petit R.J., 2005. Conserving biodiversity under climate change: the rear edge maters. Ecology Letters 8: 461-467. DOI: 10.1111/j.1461-0248.2005.00739.x

Hansen OK, Vendramin GG, Sebastiani F, Edwards KJ, (2005). Development of microsatellites markers in Abies nordmanniana (Stev.) Spach and cross-species amplifications in Abies genus. Molecular Ecology Notes 5: 784-787. DOI: 10.1111/j.1471-8286.2005.01062.x

Howe G.T., Aitken S.N., Neale D.B., Jermstad K.D., Wheeler N.C., and Chen T.H.H., 2003. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can. J. Bot. 81: 1247-1266. DOI: 10.1139/b03-141

Hurdu B.-I., Escalante T., Puşcaş M., Novikoff A., Bartha L., Zimmermann N.E., 2016. Exploring the different facets of plant endemism in the South-Eastern Carphatians: a manifold approach for the determination of biotic elements, centres and areas of endemism. Biological Journal of the Linnean Society 119: 649-672. DOI: 10.1111/bij.12902

Konnert M., Bergmann F., 1995. The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 196 (1): 19-30. DOI: 10.1007/BF00985333

Konôpková A., Krajmerova D., Kurjak D., Kmet J., Pšidova E., Kučerová J., Hrivnák M., Longauer R., Ditmarova L., Gömörz D., 2019. Nucleotide polymorphisms associated with climate and physiological traits in silver fir (Abies alba Mill.) provenances. Flora 250: 37-43. DOI: 10.1016/j.flora.2018.11.012

Lesica P., Allendorf F.W., 1995. When are peripheral populations valuable for conservation? Conservation Biology 9: 753-760. DOI: 10.1046/j.1523-1739.1995.09040753.x

Lucău-Dănila A., 1991. Variabilitatea genetică a bradului. Universitatea "Transilvania" Brașov. Teza de doctorat. (in Romanian).

Magyari E.K., Jakab G., Bálint M., Buczkó K., Braun M., 2012. Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quaternary Science Reviews 35: 116-130. DOI: 10.1016/j.quascirev.2012.01.006

Manni F., Guerard E., Heyer E., 2004. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier's algorithm. Hum Biol 76: 173-190. DOI: 10.1353/hub.2004.0034

Marchi M., Nocentini S., Ducci F., 2016. Future scenarios and conservation strategies for a rear-edge marginal population of Pinus nigra Arnold in Italian central Apennines. Forest Systems 25(3), e072, 12pages. DOI: 10.5424/fs/2016253-09476

Meirmans P.G., 2012. The trouble with isolation by distance. Molecular Ecology 21: 2839-2846. DOI: 10.1111/j.1365-294X.2012.05578.x

Mihai G., Bîrsan M-V., Dumitrescu A., Alexandru A., Mirancea I., Ivanov P., Stuparu E., Teodosiu M., Daia M., 2018. Adaptive genetic potential of European silver fir in Romania in the context of climate change. Annals of Forest Research 61(1):95-108. DOI: 10.15287/afr.2018.1021

Ortego J., Riordan E.C., Gugger P.F., Sork V.L., 2012. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol.Ecol. 21: 3210-3223. DOI: 10.1111/j.1365-294X.2012.05591.x

Pârnuţă G., Stuparu E., Budeanu M., Scărlătescu V., Marica F.-M., Lala I., Tudoroiu M., Lorenţ A., Filat M., Teodosiu M., Nica M.S., Chesnoiu E.N., Pârnuţă P., Mirancea I., Marcu C., Pepelea D., Dinu C., Marin S., Daia M., Dima G., Șofletea N., Curtu A.-L., 2012. Catalogul Naţional al materialelor de bază pentru producerea materialelor forestiere de reproducere din România. Editura Silvică, Bucureşti, 304 p.

Peakall R., Smouse P.E., 2005. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2: 2537-2539. DOI: 10.1093/bioinformatics/bts460

Postolache D., Popescu F., Pitar D., Apostol E.N., Iordan A., Avram M., Iordan O., Zhelev P., 2016: Originea, evoluția și structura genetică a brădetelor din România evaluate prin intermediul markerilor moleculari. Revista de Silvicultură și Cinegetică Anul XXI (38): 8-14.

Ronikier M., 2011. Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon 60(2): 373-389. DOI: 10.1002/tax.602008

Rousset F (2008). Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resources 8: 103-106. DOI: 10.1111/j.1471-8286.2007.01931.x

Ruosch M., Spahni R., Joos F., Henne P.D., Knaap W.O., Tinner W. 2016. Past and future evolution of Abies alba forests in Europe-comparison of a dynamic vegetation model with palaeo data and observations. Glob Change Biol 22(2):727-740. DOI: 10.1111/gcb.13075

Samartin S., Heiri O., Kaltenrieder P., Kühl N., Tinner W., 2016. Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy. Quat Sci Rev 143:107-119. DOI: 10.1016/j.quascirev.2016.04.005

Sancho-Knapik D., Peguero-Pina J.J., Cremer E., Camarero J., Cancio Á., Ibarra N., Konnert M., Pelegrín E., 2014. Genetic and environmental characterization of Abies alba Mill. populations at its western rear edge. Pirineos. 169. e007. 10.3989/Pirineos.2014.169007. DOI: 10.3989/Pirineos.2014.169007

Savolainen O., 1996. Pines beyond the polar circle: Adaptation to stress conditions. Euphytica 92(1-2): 139-145. DOI: 10.1007/BF00022839

Şofletea N, Curtu AL, 2001. Dendrologie [Dendrology]. Editura Pentru Viaţă, Braşov, România, pp.300. [in Romanian].

Tanțău I., Feurdean A., de Beaulieu J.-L., Reille M., Fărcaș S., 2011. Holocene vegetation history in the upper forest belt of the Eastern Romanian Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecolgy 309: 281-290. DOI: 10.1016/j.palaeo.2011.06.011

Tanțău I., Reille M., de Beaulieu J.L., Fărcaș S., Goslar T., Paterne M., 2003. Vegetation history in the eastern Romanian Carpathians: pollen analysis of two sequences from the Mohos crater. Vegetation History and Archeobotany 12: 113-125. DOI: 10.1007/s00334-003-0015-6

Terhürne-Berson R., Litt T., Cheddadi R., 2004. The spread of Abies throughout Europe since the last glacial period: combined macrofossil and pollen data. Veget Hist Archaeobot 13:257-268. DOI: 10.1007/s00334-004-0049-4

Tinner W., Colombaroli D., Heiri O., Henne P.D., Steinacher M., Untenecker J., Vescovi E., Allen J.R.M., Carraro G., Conedera M., Fortunat J., Lotter A.F., Lutherbacher J., Samartin S., Valsecchi V., 2013. The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming.Ecological Monographs 83:419-439. DOI: 10.1890/12-2231.1

Tollesfrud M.M., Kissling R., Gugerli F., Johnsen Ø., Skrøppa T., Cheddadi R., Van der Knaap W.O., Latalowa M., Terhürne-Berson R., Litt Th., Geburek Th., Brochman C., Sperisen C., 2008. Genetic consequences of glacial survival and postglacial coloniyation in Norway spruce: combined analzsis of mitochondrial DNA and fosil pollen. Molecular Ecology 17: 4134-4150. DOI: 10.1111/j.1365-294X.2008.03893.x

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellites data. Molecular Ecology Notes 4:535-538. DOI: 10.1111/j.1471-8286.2004.00684.x

Vitasse Y., Bottero A., Rebetez M.,Conedera M., Augustin S., Brang P., Tinner W., 2019. What is the potential of silver fir to thrive under warmer and drier climate? European Journal of Forest Research 138(4): 547-560. DOI: 10.1007/s10342-019-01192-4

Wang I. J., 2013. Examining the full effect of landscape heterogeneity on spatial genetic variation: a multiple matrix regresion approach for quantifying geographic and ecological isolation. Evolution 62(12): 3403-3411. DOI: 10.1111/evo.12134

Ziegenhagen B., Fady B., Kuhlenkamp V., Liepelt S. 2005. Differentiating groups of Abies species with a simple molecular markers. Silvae Genetica 54 (3): 123-126. DOI: 10.1515/sg-2005-0019


No Supplimentary Material available for this article.
No metrics available for this article.

Related Articles

Related Authors

 



In Google Scholar

In Annals of Forest Research

In Google Scholar

 
  • Maria Teodosiu
  • Georgeta Mihai
  • Barbara Fussi
  • Elena Ciocîrlan
  • Maria Teodosiu
  • Georgeta Mihai
  • Barbara Fussi
  • Elena Ciocîrlan