Research article

Mapping forest aboveground biomass with a simulated ICESat-2 vegetation canopy product and Landsat data

Lana Landra Narine , Sorin Popescu, Tan Zhou, Shruthi Srinivasan, Kaitlin Harbeck

Lana Landra Narine
Texas A&M University. Email: ll_narine@tamu.edu
Sorin Popescu
Texas A&M University
Tan Zhou
Texas A&M University
Shruthi Srinivasan
Texas A&M Forest Service, USA
Kaitlin Harbeck
NASA, USA

Online First: March 06, 2019
Narine, L., Popescu, S., Zhou, T., Srinivasan, S., Harbeck, K. 2019. Mapping forest aboveground biomass with a simulated ICESat-2 vegetation canopy product and Landsat data. Annals of Forest Research DOI:10.15287/afr.2018.1163


The assessment of forest aboveground biomass (AGB) can contribute to reducing uncertainties associated with the amount and distribution of terrestrial carbon. The Ice, Cloud and land Elevation Satellite-2 (ICESat-2) was launched on September 15th, 2018 and will provide data which will offer the possibility of assessing AGB and forest carbon at multiple spatial scales. The primary goal of this study was to develop an approach for utilizing data similar to ICESat-2’s land-vegetation along track product (ATL08) to generate wall-to-wall AGB maps. Utilizing simulated daytime and nighttime ICESat-2 data from planned ICESat-2 tracks over vegetation conditions in south-east Texas, we investigated the integration of Landsat data and derived products for AGB model and map production. Linear regression models were first used to relate simulated photon-counting lidar (PCL) metrics for 100 m segments along ICESat-2 tracks to reference airborne lidar-estimated AGB over Sam Houston National Forest (SHNF) in south-east Texas. Random Forest (RF) was then used to create AGB maps from predicted AGB estimates and explanatory data consisting of spectral metrics derived from Landsat TM imagery and land cover and canopy cover data from the National Land Cover Database (NLCD). Using RF, AGB and AGB uncertainty maps produced at 30 m spatial resolution represented three data scenarios; (1) simulated ICESat-2 PCL vegetation product without the impact of noise (no noise scenario), (2) simulated ICESat-2 PCL vegetation product from data with noise levels associated with daytime operation of ICESat-2 (daytime scenario), and (3) simulated ICESat-2 PCL vegetation product from data with noise levels associated with nighttime operation of ICESat-2 (nighttime scenario). The RF models exhibited moderate accuracies (0.42 to 0.51) with RMSE values between 19 Mg/ha to 20 Mg/ha with a separate test set. The adoption of a combinatory approach of simulated ICESat-2 and Landsat data could be implemented at larger spatial scales and in doing so, ancillary data such as climatic and topographic variables may be examined for improving AGB predictions.


Avitabile V., Baccini A., Friedl M.A., Schmullius C., 2012. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sensing of Environment 117: 366-380. DOI:10.1016/j.rse.2011.10.012

Baccini A., Friedl M.A., Woodcock C.E., Warbington R., 2004. Forest biomass estimation over regional scales using multisource data. Geophysical Research Letters 31: 1-4. DOI: 10.1029/2004gl019782

Baghdadi N., le Maire G., Fayad I., Bailly J.S., Nouvellon Y., Lemos C.; Hakamada, R., 2014. Estimation of forest height and aboveground biomass from ICESat-2/GLAS data in eucaluptus plantations in Brazil. In 2014 IEEE International Geoscience and Remote Sensing Symposium, 13-18th July 2014, Quebec City, QC, Canada. IEEE, pp. 725-728. DOI: 10.1109/igarss.2014.6946526

Blair J.B., Hofton M.A., 1999. Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data. Geophysical Research Letters 26: 2509-2512. DOI: 10.1029/1999gl010484

Breiman L., 2001. Random forests. Machine Learning 45: 5-32. DOI: 10.1023/a:1010933404324

Brown S., 2002. Measuring carbon in forests: current status and future challenges. Environmental Pollution 116: 363-372. DOI: 10.1016/s0269-7491(01)00212-3

Chi H., Sun G.Q., Huang J.L., Guo Z.F., Ni W.J., Fu A.M., 2015. National forest aboveground biomass mapping from ICESat/GLAS data and MODIS imagery in China. Remote Sensing 7: 5534-5564. DOI: 10.3390/rs70505534

Degnan J.J., 2002. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements. Journal of Geodynamics 34: 503-549. DOI: 10.1016/S0264-3707(02)00045-5

Deo R.K., Domke G.M., Russell M.B., Woodall C.W., Andersen H.E., 2018. Evaluating the influence of spatial resolution of Landsat predictors on the accuracy of biomass models for large-area estimation across the eastern USA. Environmental Research Letters 13(5): 1-9. DOI: 10.1088/1748-9326/aabcd5

Duncanson L.I., Niemann K.O., Wulder M.A., 2010. Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sensing of Environment 114: 138-154 DOI:10.1016/j.rse.2009.08.018

Freeman E.A., Frescino T.S., Moisen G.G., 2018. ModelMap: an R Package for Model Creation and Map Production. Available online: https://cran.r-project.org/web/packages/ModelMap/vignettes/VModelMap.pdf (accessed: 10.05.18).

Freeman E.A., Moisen G.G., Coulston J.W., Wilson B.T., 2016. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance. Canadian Journal of Forest Research 46: 323-339. DOI: 10.1139/cjfr-2014-0562

Glenn N.F., Neuenschwander A., Vierling L.A., Spaete L., Li A.H., Shinneman D.J., Pilliod D.S., Arkle R.S., McIlroy S.K., 2016. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass. Remote Sensing of Environment 185: 233-242. DOI: 10.1016/j.rse.2016.02.039

Goetz S., Dubayah R., 2011. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Management 2: 231-244. DOI: 10.4155/cmt.11.18

Gwenzi D., Lefsky, M.A., 2014. Prospects of photon counting lidar for savanna ecosystem structural studies. In ISPRS Technical Commission I Symposium, 17-20th November, Denver, Colorado, USA. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, pp. 141-147. DOI: 10.5194/isprsarchives-XL-1-141-2014

Gwenzi D., Lefsky M.A., Suchdeo V.P., Harding D.J., 2016. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data. ISPRS Journal of Photogrammetry and Remote Sensing 118: 68-82. DOI:10.1016/j.isprsjprs.2016.04.009

Harding D.J., Carabajal C.C., 2005. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophysical Research Letters 32: 1-4. DOI: 10.1029/2005gl023471

Homer C., Dewitz J., Yang L.M., Jin S., Danielson P., Xian G., Coulston J., Herold N., Wickham J., Megown K., 2015. Completion of the 2011 National Land Cover Database for the conterminous United States - Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing 81: 345-354. DOI: 10.14358/pers.81.5.345

Houghton R.A., 2007. Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences 35(1): 313-347. DOI: 10.1146/annurev.earth.35.031306.140057

Houghton R.A., Butman D., Bunn A.G., Krankina O.N., Schlesinger P., Stone T.A., 2007. Mapping Russian forest biomass with data from satellites and forest inventories. Environmental Research Letters 2: 7pp. DOI: 10.1088/1748-9326/2/4/045032

Hu T., Su Y., Xue B., Liu J., Zhao X., Fang J., Guo Q., 2016. Mapping global forest aboveground biomass with spaceborne LiDAR, optical imagery, and forest inventory data. Remote Sensing 8(7): 565.
DOI: 10.3390/rs8070565

Hudak A.T., Lefsky M.A., Cohen W.B., Berterretche M., 2002. Integration of lidar and Landsat ETM plus data for estimating and mapping forest canopy height. Remote Sensing of Environment 82: 397-416, DOI: 10.1016/s0034-4257(02)00056-1

Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R.A., 2003. National-scale biomass estimators for United States tree species. Forest Science 49: 12-35.

Le Toan T., Quegan S., Davidson M.W.J., Balzter H., Paillou P., Papathanassiou K., Plummer S., Rocca F., Saatchi S., Shugart H., Ulander L. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sensing of Environment 115: 2850-2860. DOI: 10.1016/j.rse.2011.03.020

Lefsky M.A., Harding D.J., Keller M., Cohen W.B., Carabajal C.C., Del Bom Espirito-Santo F., Hunter M.O., de Oliveira R., 2005. Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters 32: 1-4. DOI: 10.1029/2005gl023971

Lefsky M.A., Keller M., Pang Y., de Camargo P.B., Hunter M.O. 2007. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. Journal of Applied Remote Sensing 1: 1-18. DOI: 10.1117/1.2795724

Leigh H.W., Magruder L.A., Carabajal C.C., Saba J.L., McGarry J.F., 2015. Development of onboard digital elevation and relief databases for ICESat-2. IEEE Transactions on Geoscience and Remote Sensing 53(4): 2011-2020. DOI: 10.1109/tgrs.2014.2352277

Liaw A., Wiener M., 2002. Classification and Regression by randomForest. R News 2/3: 18-22.

Markus, T., Neumann T., Martino A., Abdalati W., Brunt K., Csatho B., Farrell S., Fricker H., Gardner A., Harding D., Jasinski M., Kwok R., Magruder L., Lubin D., Luthcke S., Morison J., Nelson R., Neuenschwander A., Palm S., Popescu S., Shum C.K., Schutz B.E., Smith B., Yang Y., Zwally J., 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment 190: 260-273. DOI: 10.1016/j.rse.2016.12.029

Marselis S., Armston J., Dubayah R., 2016. Summary of the second GEDI science team meeting. The Earth Observer 28(6): 31-36.

Martino A., 2010. ATLAS Performance Spreadsheet. Web: http://icesat.gsfc.nasa.gov/icesat2/data/sigma/sigma_data.php. Accessed: 14.02.17.

Montesano P.M., Rosette J., Sun G., North P., Nelson R.F., Dubayah R.O., Ranson K.J., Kharuk V. 2015. The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient. Remote Sensing of Environment 158: 95-109. DOI: 10.1016/j.rse.2014.10.029

MRLC, 2018. Multi-resolution land characteristics consortium (MRLC): national land cover database. Web: http://www.mrlc.gov/ (accessed: 14.02.19).

Narine, L.L., Popescu S., Neuenschwander A., Zhou T., Srinivasan S., Harbeck K., 2019. Estimating Aboveground Biomass and Forest Canopy Cover with Simulated ICESat-2 Data. Remote Sensing of Environment 224: 1-11. DOI: 10.1016/j.rse.2019.01.037

National Aeronautics and Space Administration, 2019. GEDI - Global Ecosystem Dynamics Investigation Lidar. Web: http://science.nasa.gov/missions/gedi/ Accessed: 11.10.18.

National Aeronautics and Space Administration, 2017. ICESat & ICESat-2. Web: https://science.nasa.gov/ Accessed: 10.05.18.

Nelson R., Margolis H., Montesano P., Sun G., Cook B., Corp L., Andersen H.-E., deJong B., Pellat F.P., Fickel T., Kauffman J., Prisley S., 2017. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sensing of Environment 188: 127-140. DOI: 10.1016/j.rse.2016.10.038

Neuenschwander A.L., Magruder L.A., 2016. The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems. Remote Sensing 8(12): 1-16. DOI: 10.3390/rs8121039

Neuenschwander A., Popescu S., Nelson R., Harding D., Pitts K., Pederson D., Sheridan R., 2017. Ice, Cloud, and Land Elevation Satellite (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land - Vegetation Along-track products (ATL08), 78 p.

Popescu S.C., 2007. Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy 31: 646-655. DOI: 10.1016/j.biombioe.2007.06.022

Popescu S.C., Wynne R.H., 2004. Seeing the trees in the forest: Using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogrammetric Engineering and Remote Sensing 70: 589-604. DOI: 10.14358/PERS.70.5.589

Popescu S.C., Wynne R.H., Nelson R.F., 2003. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing 29: 564-577. DOI: 10.5589/m03-027

Popescu S.C., Zhou T., Nelson R., Neuenschwander A., Sheridan R., Narine L., Walsh K.M., 2018. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sensing of Environment 208: 154-170. DOI:10.1016/j.rse.2018.02.019

Schutz B.E., Zwally H.J., Shuman C.A., Hancock D., DiMarzio J.P., 2005. Overview of the ICESat mission. Geophysical Research Letters 32(4). DOI: 10.1029/2005gl024009

Simard M., Pinto N., Fisher J.B., Baccini A., 2011. Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research-Biogeosciences, 116: 1- 12. DOI: 10.1029/2011JG001708

Texas A&M Forest Service, 2019. East Texas Forestlands, 2012. Web: http://texasforestservice.tamu.edu/fia/publications/ Accessed: 11.10.18.

USDA Forest Service, 2018. Sam Houston National Forest. Web: https://www.fs.usda.gov/detail/texas/about-forest/districts/?cid=fswdev3_008443 Accessed: 06.09.18.

Zald H.S.J., Wulder M.A., White J.C., Hilker T., Hermosilla T., Hobart G.W., Coops N.C., 2016. Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sensing of Environment 176: 188-201. DOI: 10.1016/j.rse.2016.01.015

Zwally H.J., Schutz B., Abdalati W., Abshire J., Bentley C., Brenner A., Bufton J., Dezio J., Hancock D., Harding D., Herring T., Minster B., Quinn K., Palm S., Spinhirne J., Thomas R., 2002. ICESat's laser measurements of polar ice, atmosphere, ocean, and land. Journal of Geodynamics 34(3-4): 405-445. DOI: 10.1016/S0264-3707(02)00042-X


No Supplimentary Material available for this article.
No metrics available for this article.