
1

Ann. For. Res. 62(1): _-_, 2019                                                                                   ANNALS OF FOREST RESEARCH 
DOI:                                       www.afrjournal.org

Mapping forest aboveground biomass with a 
simulated ICESat-2 vegetation canopy product 
and Landsat data

Lana L. Narine1§, Sorin Popescu1, Tan Zhou1, Shruthi Srinivasan2, Kaitlin Harbeck3

Narine L.L., Popescu S., Zhou T., Srinivasan S., Harbeck K., 2019. Mapping 
forest aboveground biomass with a simulated ICESat-2 vegetation canopy product 
and Landsat data. Ann. For. Res. 62(1): _-_.

Abstract. The assessment of forest aboveground biomass (AGB) can con-
tribute to reducing uncertainties associated with the amount and distribution 
of terrestrial carbon. The Ice, Cloud and land Elevation Satellite-2 (ICE-
Sat-2) was launched on September 15th, 2018 and will provide data which 
will offer the possibility of assessing AGB and forest carbon at multiple 
spatial scales. The primary goal of this study was to develop an approach 
for utilizing data similar to ICESat-2’s land-vegetation along track product 
(ATL08) to generate wall-to-wall AGB maps. Utilizing simulated daytime 
and nighttime ICESat-2 data from planned ICESat-2 tracks over vegetation 
conditions in south-east Texas, we investigated the integration of Landsat 
data and derived products for AGB model and map production. Linear re-
gression models were first used to relate simulated photon-counting lidar 
(PCL) metrics for 100 m segments along ICESat-2 tracks to reference air-
borne lidar-estimated AGB over Sam Houston National Forest (SHNF) in 
south-east Texas. Random Forest (RF) was then used to create AGB maps 
from predicted AGB estimates and explanatory data consisting of spectral 
metrics derived from Landsat TM imagery and land cover and canopy cover 
data from the National Land Cover Database (NLCD). Using RF, AGB and 
AGB uncertainty maps produced at 30 m spatial resolution represented three 
data scenarios; (1) simulated ICESat-2 PCL vegetation product without the 
impact of noise (no noise scenario), (2) simulated ICESat-2 PCL vegetation 
product from data with noise levels associated with daytime operation of 
ICESat-2 (daytime scenario), and (3) simulated ICESat-2 PCL vegetation 
product from data with noise levels associated with nighttime operation of 
ICESat-2 (nighttime scenario). The RF models exhibited moderate accura-
cies (0.42 to 0.51) with RMSE values between 19 Mg/ha to 20 Mg/ha with 
a separate test set. The adoption of a combinatory approach of simulated 
ICESat-2 and Landsat data could be implemented at larger spatial scales and 
in doing so, ancillary data such as climatic and topographic variables may 
be examined for improving AGB predictions. 
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Introduction

Accurate and spatially complete assessments 
of AGB are indicative of the extent to which 
forests contribute to the global carbon budget 
and can reduce uncertainties with the quanti-
ty and distribution of terrestrial carbon stocks 
(Houghton 2007, Houghton et al. 2007, Goetz 
& Dubayah 2011, Montesano et al. 2015). 
AGB carbon is primarily estimated using field 
inventory data where direct measurements 
such as tree diameters, are converted to AGB 
using biomass expansion factors or allomet-
ric regression equations (Brown 2002). These 
biomass regression equations are developed 
using allometric data collected from a sample 
of trees that have been destructively harvest-
ed and also usually over limited areas (Brown 
2002, Popescu 2007). Combined with field 
measurements of AGB, remote sensing data 
can be used to reliably estimate AGB over 
multiple spatial scales (Popescu 2007, Nel-
son et al. 2017). Spaceborne light detection 
and ranging (lidar) instruments, in particular, 
are capable of providing measurements on a 
global scale and across areas that are other-
wise difficult to access or where cost is pro-
hibitive (Nelson et al. 2017). Reliable estima-
tions of canopy height, basal area, AGB and 
aboveground carbon have been derived with 
spaceborne lidar (Nelson et al. 2017). While 
spatially continuous, global measurements 
from lidar are not yet possible, optical remote-
ly sensed data can be integrated to generate 
spatially complete coverage of AGB and forest 
carbon at such scales (Hu et al. 2016).  
 The Ice, Cloud, and land Elevation Satellite 
(ICESat) operated from 2003 to 2010 and car-
ried the Geoscience Laser Altimeter System 

(GLAS), a waveform lidar system, which pro-
vided global elevation data during the course 
of the mission (Zwally et al. 2002). Its primary 
objective was to capture elevation changes of 
the earth’s polar ice sheets and reduce uncer-
tainties with the ice sheet mass balance (Zwal-
ly et al. 2002). GLAS produced 1064 nm and 
532 nm laser pulses at a frequency of 40 Hz 
and illuminated a spot on the ground meas-
uring approximately 60 m in diameter every 
172 m in the along-track direction (Zwally et 
al. 2002).  The spaceborne data collected by 
GLAS offers multidisciplinary benefits, which 
includes global topography and vegetation 
canopy heights (Zwally et al. 2002, Schutz et 
al. 2005). The literature demonstrates the util-
ity of GLAS data for estimating forest heights 
(Harding & Carabajal 2005, Lefsky et al. 2007, 
Simard et al. 2011, Baghdadi et al. 2014) and 
AGB (Lefsky et al. 2005; Nelson et al. 2017). 
Furthermore, to overcome the spatial discon-
tinuity of the lidar measurements, several 
studies have demonstrated approaches that 
integrate data from spaceborne multispectral 
sensors to generate wall-to-wall maps of AGB 
(Duncanson et al. 2010, Hudak et al. 2002; Chi 
et al. 2015, Hu et al. 2016). Essentially, the use 
of satellite imagery, such as data from Land-
sat sensors and from the moderate-resolution 
imaging spectroradiometer (MODIS) has been 
widely demonstrated across large-scale map-
ping studies. 
 With the recent launch of ICESat-2 on Sep-
tember 15th, 2018 (NASA 2017), up-to-date 
vegetation data at near-global scales and new 
prospects for vegetation mapping, will be 
available. This follow-on 3-year mission has 
been designed to overcome some of the lim-
itations associated with ICESat to provide 
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improved sampling and increased spatial cov-
erage, as described in Markus et al. (2017). 
Specifically, ICESat-2’s photon-counting lidar 
(PCL) instrument, the Advanced Laser Altim-
eter System (ATLAS), splits a 532 nm laser 
pulse into three pairs of beams spaced 3.3 km 
apart with a 90 m pair spacing (Gwenzi & Lef-
sky 2014, Markus et al. 2017). It operates at 
an increased repetition rate of 10 kHz, facili-
tating denser sampling and producing smaller 
footprints than GLAS, measuring 14 m and up 
to 17 m every 0.7 m along the ground track 
(Leigh et al. 2015, Markus et al. 2017). Since 
vegetation has lower reflectance than ice sur-
faces at the 532 nm wavelength, approximate-
ly 1/3 to 1/9 of the photon returns from ice and 
snow surfaces is expected for terrestrial sur-
faces (Neuenschwander & Magruder 2016). 
The number of signal photons per transmitted 
pulse will range between 0 and 3 over vege-
tated surfaces (Neuenschwander & Magruder 
2016).  However, differentiating signal pho-
tons from noise photons represents a challenge 
with photon counting systems like ATLAS, so 
effective filtering algorithms are crucial to de-
riving accurate estimates (Glenn et al. 2016). 
Noise levels also vary with operation times of 
ICESat-2, with less background noise associ-
ated with nighttime operation of ATLAS and 
increased potential for more accurate canopy 
height retrievals than from daytime retrievals 
(Popescu et al. 2018). 
 One of the ICESat-2’s data products is the 
Land Water Vegetation Elevation or ATL08 
product, which will provide terrain and canopy 
heights for non-polar regions (Neuenschwan-
der et al. 2017). Terrain and height estimates 
will be provided at a fixed segment size of 100 
m along the ground track. The ATL08 product 
will complement data from other space-based 
missions, like the Global Ecosystem Dynam-
ics Investigation (GEDI) which was launched 
on December 5th, 2018 (NASA 2019) as well 
as data from optical sensors. The examination 
of approaches for AGB estimation and map-
ping could allow for development of an ap-

propriate methodological framework for use 
as soon the ATL08 product becomes available. 
However, studies pertaining to the use of IC-
ESat-2 data, especially its vegetation product 
for characterizing vegetation, are limited. For 
instance, Montesano et al. (2015) simulated 
ICESat-2 data and indicated difficulty in cap-
turing vegetation structure where vegetation is 
sparse. An analysis of data from the Multiple 
Altimeter Beam Experimental Lidar (MA-
BEL) instrument, ICESat-2’s demonstrator 
instrument (Glenn et al. 2016), highlighted a 
synergistic approach between ICESat-2 and 
Landsat for improving AGB estimates. Gwen-
zi et al. (2016) indicated similar performance 
between ICESat and ICESat-2 using MABEL 
data, in estimating heights for savanna vegeta-
tion. 
 The aim of this study was to examine the use 
of ICESat-2 data, for generating wall-to-wall 
AGB coverage. The conceptual approach to 
AGB mapping has been highlighted in previ-
ous studies with GLAS data (Duncanson et al. 
2010; Chi et al. 2015). However, considerable 
differences between the two instruments, such 
as measurement concept, spatial coverage and 
data products (Markus et al. 2017) warrant in-
sights into approaches for AGB mapping with 
expected data from ICESat-2. In this study, a 
synergistic approach with data similar to what 
will be provided by ICESat-2 and Landsat 
products was explored. With expected differ-
ences in noise levels associated with daytime 
and nighttime operation of ATLAS and asso-
ciated impacts on canopy height estimation 
(Popescu et al. 2018), an examination of AGB 
mapping under different data scenarios are 
also included in this study. The primary goal 
of this study was to create wall-to-wall AGB 
maps at 30-m spatial resolution using simulat-
ed PCL-estimated AGB from known ICESat-2 
track locations over Sam Houston National 
Forest (SHNF) in Texas and predictor varia-
bles from Landsat data. Three AGB maps were 
created from the following data scenarios: (i) 
Simulated ICESat-2 PCL vegetation product 

-
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without the impact of noise (no noise scenar-
io), (ii) Simulated ICESat-2 PCL vegetation 
product from data with noise levels associated 
with daytime operation of ICESat-2 (daytime 
scenario), and (iii) Simulated ICESat-2 PCL 
vegetation product from data with noise levels 
associated with nighttime operation of ICE-
Sat-2 (nighttime scenario). The same modeling 
technique was applied to generate AGB maps 
for the three scenarios with spatially explicit 
maps of model uncertainty produced for each 
corresponding AGB density map. ICESat-2 
will provide global-scale sampling of forest 
resources and could potentially be leveraged to 
provide rich insight about the earth’s forests. 
At the end of its mission, ICESat-2 data will be 
used to generate ATL18 products which con-
sist of gridded terrain and canopy maps (Neu-
enschwander et al. 2017). This study ultimate-
ly serves to support upcoming AGB mapping 
with ICESat-2 and advance our understanding 
of the data for vegetation studies. 

Materials and methods 

Study area 

The study area is located in SHNF in south-
east Texas, USA (Latitude 30° 42′ N, Longi-
tude 95° 23′ W) within the Pineywoods ecore-
gion and consists of approximately 48 km² of 
land. Summer temperatures average 28°C and 
the average winter temperature is around 12°C 
(USDA Forest Service 2018). The site consists 
of gentle slopes and elevations from 62 m and 
105 m with a mean elevation of 85 m (Pope-
scu 2007). Approximately 80% of the forests 
are classified as evergreen forest (Homer et al. 
2015; MRLC 2017), which include Loblolly 
pine (Pinus taeda) plantations and old growth 
Loblolly pine stands (Popescu 2007), while 
common hardwoods found on floodplains and 
drier uplands include White Oak (Quercus 
alba) and Southern Red Oak (Quercus falca). 
Planned ICESat-2 track locations for the study 
site, provided by the mission’s Science Defi-

nition Team (SDT) (Neuenschwander et al. 
2017), are shown in Figure 1. 

Simulated ICESat-2 data scenarios

Airborne lidar data collected in November 
2010 were used to simulate ICESat-2 data 
along known ICESat-2 tracks over SHNF. 
The data were acquired along 12 flight lines 
in the north-south direction and 19 lines flown 
from east to west, at around 600 m above-
ground-level (AGL) and has a point density 
of 4 points per m2. The airborne lidar data and 
simulated ICESat-2 footprints with a center-
to-center spacing of 70 cm along each ground 
track were used as input for simulation of the 
data scenarios. The simulation algorithm, de-
scribed in detail in Neuenschwander & Ma-
gruder (2016), was developed by the ICESat-2 
SDT. To summarize, four main steps were 
implemented (Neuenschwander & Magrud-
er 2016): (1) assemble heights from discrete 
return points within a 7 m radius of footprint 
centers to generate a pseudo-waveform (Blair 
& Hofton 1999), (2) construct a height vector 
for each footprint, (3) randomly determine 
the number of photons (x) to sample per shot 
based on design cases developed by the mis-
sion’s instrument team, and (4) randomly sam-
ple the vector of heights x times, weighted by 
the pseudo-waveform. The design cases devel-
oped by the mission’s instrument team indicate 
the expected number of photons per footprint 
vary by vegetation type and can range from 0 
to 3 returns per pulse (Neuenschwander & Ma-
gruder 2016). The mean number of signal pho-
tons per footprint for SHNF was modeled at 
1.9, based on the ATLAS performance model 
for temperate forests (Martino 2010). To com-
plete the simulation, background noise, repre-
senting anticipated solar background noise or 
from the atmosphere was added to the data. 
Since solar background noise is expected to be 
pronounced during daytime operation of ICE-
Sat-2 (Degnan 2002), the datasets were gener-
ated to reflect the different expected noise lev-
els: (1) daytime scenario with expected noise 
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levels for daytime operation of ICESat-2, and 
(2) nighttime scenario with noise levels based 
on night operation of ICESat-2. Noise photons 
are not discernable from signal photons so the 
implementation of effective processing algo-
rithms is critical in order to derive accurate 
forest measurements from PCL data. Noise 
filtering and photon classification algorithms 
(Popescu et al. 2018) were applied to the day-
time and nighttime scenarios to derive top of 
canopy and ground estimates. As presented in 
Popescu et al. (2018), noise filtering entailed 
a multi-level approach for minimizing noise 
photons and moving overlapping windows 

and cubic spline interpola-
tion were used to classify the 
remaining photons. In terms 
of accuracy of the algo-
rithms, Popescu et al. (2018) 
reported average RMSE val-
ues of 1.83 m and 2.80 m for 
estimated ground elevation 
and 2.70 m and 3.59 m for 
canopy height estimations 
with the nighttime and day-
time scenarios respectively. 
Following the application of 
the noise filtering and pho-
ton classification algorithms 
for daytime and nighttime 
scenarios investigated in 
this study, estimated canopy 
heights were then retrieved 
by subtracting estimated 
ground from top of canopy 
values. 
 The airborne lidar data 
for the study area was also 
processed to obtain above-
ground-level heights and 
used for PCL simulation 
without the addition of back-
ground noise (no noise sce-
nario). In total, three sim-
ulated PCL datasets (data 
scenarios) were generated 
for each planned ICESat-2 

track over SHNF.

Reference AGB

Reference AGB estimates were calculated 
from a canopy height model (CHM) derived 
from airborne lidar data for SHNF. The CHM 
was used as input in a lidar software applica-
tion called TreeVaW, to extract forest inven-
tory parameters for individual trees (Pope-
scu et al. 2003, Popescu & Wynne 2004). 
TreeVaW uses a variable window technique 
with local maximum focal filtering to extract 

ICESat-2 tract locations overlaid on 2010 National 
Agriculture Imagery Program (NAIP) aerial imagery 
for the study area within SHNF, Texas (inset map, up-
per left corner) with demarcation of 100 m segments 
along-track on inset map, lower left corner. 

Figure 1
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tree heights, where the window size is based 
on the relationships between tree heights and 
crown widths from field inventory data (Pope-
scu 2007). Popescu & Wynne (2004) indicated 
that lidar measurements processed with this 
technique explained 97% of the variance as-
sociated with mean height of dominant pine 
trees. For SHNF, ground measured tree heights 
and corresponding crown diameters from a to-
tal of 705 pine trees and 603 deciduous trees 
from field inventories carried out in 2004 and 
2009 were used to obtain TreeVaW coeffi-
cients to subsequently derive tree locations 
and measurements. The crown diameter of an 
individually located tree in the CHM was also 
estimated in TreeVaW, which involves averag-
ing two values measured along perpendicular 
profiles from the center of a tree top by fitting 
a fourth-degree polynomial on each profile 
(Popescu et al. 2003, p. 564). Details of the 
processing approach implemented in TreeVaW 
are presented in Popescu et al. (2003) and 
Popescu & Wynne (2004). Output consisting 
of estimated diameter at breast height (dbh) 
measurements, were used to estimate tree-lev-
el AGB using a generalized biomass regres-
sion equation (eq. 1): 

AGB(kg) = exp(β0 + β1 ln(dbh))                       (1)

where dbh - the diameter at breast height (cm) 
and β0 and β1 - the parameters for the species 
group (Jenkins et al. 2003, p. 20). AGB for 
pines were calculated using the parameters for 
the “pine” species groups, with β0 = -2.5356 
and β1 = 2.4349. To calculate AGB for decid-
uous trees, parameters for the “hard maple/
oak/hickory/beech” group were used, with β0 
= -2.0127 and β1 = 2.4342 (Jenkins et al. 2003, 
p. 20).

AGB estimation from simulated PCL-derived 
metrics

For each data scenario, 100 m segments along 
ICESat-2 profiles were extracted and maxi-

mum height, mean height, height percentiles, 
canopy cover and canopy density were calcu-
lated for each segment. A segment measuring 
100 m in the along-track direction was cho-
sen in order to be consistent with the format 
of the planned ATL08 product from ICESat-2 
(Neuenschwander et al. 2017). A total of 121 
segments over the study site were used, where 
one-third was randomly assigned for model 
testing and the remaining 85 segments were 
used for developing the models for estimating 
AGB. Linear regression models were used to 
relate the simulated PCL metrics for a subset 
of the segments to spatially coincident, air-
borne-lidar estimated AGB and the resulting 
models were evaluated with a separate test set. 
Details of the methodology used to estimate 
AGB and canopy cover from simulated PCL 
metrics are provided in Narine et al. (2019). 
 Using resulting AGB models, AGB den-
sity (Mg/ha) was estimated for the segments 
over SHNF and then applied to 30 m pixels to 
match Landsat TM pixels. Since different seg-
ment lengths traverse pixels, AGB was calcu-
lated based on the portion of a 100 m segment 
across a pixel and the value was extrapolated 
to represent the pixel size using the estimated 
area of a segment across a pixel. Pixels with 
segments measuring less than 7 m in a pixel 
were excluded from analysis and average pixel 
AGB was calculated in instances where there 
were two segments (parts) of equal lengths. 
The steps for assigning AGB to pixels were re-
peated for each scenario using the correspond-
ing prediction equation developed from linear 
regression analysis.

Mapped predictors

Landsat data is freely available and offers 
global coverage (Avitabile et al. 2012). Land-
sat data, specifically, Landsat 5 Thematic Map-
per (TM) was chosen for use in this study to 
avoid temporal mismatch with the simulated 
data and reference AGB from airborne lidar 
data acquired in November, 2010. The data is 



7

Narine et al.                                                                                                                Mapping forest aboveground biomass ...

provided at spatial resolution of 30 m and has 
7 spectral bands, which include blue, green, 
red and near infra-red (NIR). A Landsat cloud-
free scene encompassing the study site, from 
path/row 26/39, acquired in November, 2010 
was downloaded from U.S. Geological Survey 
(USGS) Earth Explorer in GeoTIFF format 
and re-projected to UTM, WGS84, Zone 15N.  
The image was processed in ENVI to top-of-at-
mosphere (TOA) reflectance and vegetation 
indices were computed at the 30 m pixel size 
(Table 1). Land cover and canopy cover maps 
from the 2011 National Land Cover Database 
(NLCD) (Homer et al. 2015) were also down-
loaded and clipped to the extent of the study 
site for use as predictor variables. Land cover 
and canopy cover maps were georeferenced in 
the same projection as the Landsat TM image.

AGB mapping

The regression tree method, Random Forest 
(RF) (Breiman 2001), was used to model AGB 
for the three data scenarios using spectral met-
rics from Landsat 5 TM , landcover and can-
opy cover and estimate AGB for areas not 
overlaid by ICESat-2 tracks. RF is a nonpara-
metric modeling technique and an established 
approach for mapping AGB using multisource 
data (Baccini et al. 2004, Houghton et al. 2007, 
Chi et al. 2015). Using a bootstrap sample of 
the training data, the best split is made at the 
root node using a random sample of the pre-
dictors (Liaw & Wiener 2002). Another sam-
ple of the variables is taken at the other node 

and the process is repeated until the regression 
tree grows as large as possible. The process 
is repeated with a new bootstrap sample and 
the data is predicted by averaging the predic-
tions of all trees (Liaw & Wiener 2002). The 
un-sampled training data at each bootstrap it-
eration, called out-of-bag or OOB data, is used 
to generate OOB model predictions which are 
aggregated to calculate the error rate (Liaw 
& Wiener 2002). RF was carried out with the 
ModelMap R package (Freeman et al. 2018) 
which calls randomForest R package (Free-
man et al. 2018).  ModelMap was used to val-
idate the model with OOB predictions on the 
training data and also with a separate test set 
and apply the model to create the final AGB 
map for each scenario (Freeman et al. 2018). 
About 70% of the data was randomly assigned 
to the training dataset and remaining 30% was 
allotted to the test set and used for model eval-
uation. As a result, the training and test set for 
each scenario consisted of 1448 and 620 30-m 
pixels respectively, equating to approximate-
ly 3% and 1% of the pixels which constitute 
the study area. A total of 1000 regression trees 
were built with the training data for each sce-
nario and results were used to assign AGB val-
ues to each 30 m pixel. The final AGB maps 
were masked using the land cover map, where 
AGB density in non-forest areas (NLCD class-
es: water, developed, barren, grassland/herba-
ceous, pasture and emergent herbaceous wet-
lands) was set to 0 Mg/ha. 
 Since trees in a RF model are independent, 
the standard deviation of individual-tree pre-

Variable Description
Spectral Metrics from Landsat 5 TM
Normalized Difference Vegetation Index 
(NDVI) (NIR - Red) / (NIR + Red)

Enhanced Vegetation Index (EVI) 2.5 ∙ ((NIR - Red) / (NIR + 6 ∙ Red - 7.5 ∙ Blue + 1)) 
Soil Adjusted Vegetation Index (SAVI) ((NIR - Red) / (NIR + Red + 0.5)) ∙ (1.5)
Modified Soil Adjusted Vegetation Index 
(MSAVI) (2 ∙ NIR + 1 - sqrt ((2 ∙ NIR + 1)² - 8 ∙ (NIR - Red)))/2

Land Cover National Land Cover Database 2011 (NLCD 2011)
Canopy Cover NLCD 2011 US Forest Service Tree Canopy Cover

Mapped predictor variables for RF regressionTable 1
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dictions can be calculated at the pixel-level 
to produce a measure of prediction variability 
(Freeman et al. 2016). According to Freeman 
et al. (2016), standard deviation of predictions 
for trees can be used as a measure of uncer-
tainty in resulting maps. High uncertainty val-
ues indicate a lack of agreement among trees 
(Freeman et al. 2016, p. 15), with some trees 
predicting high AGB and others low AGB val-
ues while low uncertainty values translate to 
agreement in predictions from individual trees 
for a pixel. RF uncertainty maps correspond-
ing to final AGB maps were generated. 
 Results were also compared with AGB esti-
mated from airborne lidar data over the study. 
The reference AGB estimates derived from 
airborne lidar data were aggregated by summa-
tion at a 30 m resolution and pixel AGB values 
were converted to AGB density (Mg/ha). Cells 
spatially coincident with the original test da-
tasets were then selected and predicted AGB 
were compared with the reference AGB pixels. 
AGB predictions for the three data scenarios 
were compared using RMSE and R2 metrics.

Results

Estimated AGB from simulated PCL metrics

Details of results from regression analysis 
used to relate simulated PCL height metrics, 
canopy cover and canopy density for 100 m 
segments to reference airborne lidar-derived 
AGB are presented in Narine et al. (2019). To 
summarize, models had high accuracies and 
yielded RMSE values of 19.16 Mg/ha, 25.35 
Mg/ha, and 19.23 Mg/ha for the no noise sce-
nario, daytime scenario and nighttime scenario 
respectively. The prediction equation for the 
simulated dataset without noise used mean 
height and a canopy density variable for 15 
m to 20 m height bin and explained 79% of 
the variance in airborne lidar-estimated AGB.  
The absence of noise photons and the applied 
photon detection rate for the forest being stud-
ied rendered this dataset the best case scenar-

io. Given that background noise represents a 
challenge for photon counting systems (Glenn 
et al. 2016) estimation models associated with 
daytime and nighttime operation times offer 
more insight about the potential AGB estima-
tion from ICESat-2 data. AGB models with the 
daytime and nighttime scenarios used the same 
variables; the 10th and 90th height percentiles 
and canopy cover calculated as the proportion 
of returns above 4.6 m. With the daytime sce-
nario, the variables explained 63% of the var-
iance in airborne lidar-derived AGB while the 
same variables calculated with the simulated 
nighttime dataset yielded a R2 of 0.79. 

RF predicted AGB

Using the simulated PCL-estimated AGB as 
the dependent variable and spectral metrics, 
land cover and canopy cover, the RF regres-
sion tree models explained 49%, 39% and 47% 
of the variance with OOB data for the no noise, 
daytime and nighttime scenarios respectively.  
RMSEs estimated using OOB testing were 
20.59 Mg/ha, 19.98 Mg/ha and 19.25 Mg/
ha. With the test data, the predictive abilities 
of models, represented by the R2 values, were 
0.51, 0.42 and 0.49. Overall, the models tended 
to underestimate cells with high biomass (Fig-
ure 2). With test data, the RMSE values for the 
no noise and daytime scenarios were 19.69 Mg/
ha and 19.67 Mg/ha, and slightly improved for 
the nighttime scenario, with a RMSE of 19.31 
Mg/ha. The relationship between RF predicted 
AGB and AGB estimated from airborne lidar 
data over the study site yielded lower R2 val-
ues and higher RMSEs and similar results for 
the three scenarios. When rounded to the near-
est whole number, the RMSE was 35 Mg/ha 
with the no noise, daytime and nighttime sce-
narios while the variance explained was 46% 
with the no noise and nighttime scenarios and 
45% with the daytime scenario (Table 2). The 
most important predictor of AGB for the three 
data scenarios was canopy cover followed by 
NDVI and land cover. Variable importance 
was almost split between NDVI and land cover 
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while SAVI and MSAVI were the least impor-
tant predictors of AGB.
 Average AGB values from final AGB maps 
(Figures 3-5) generated with the RF regres-
sion models were 53.05 Mg/ha, 50.73 Mg/
ha and 52.39 Mg/ha for the no noise, daytime 
and nighttime scenarios respectively. In com-
parison, average AGB of forests in the train-
ing data were 52.09 Mg/ha, 51.21 Mg/ha, and 
52.24 Mg/ha. With this data, AGB ranged from 
0 Mg/ha to 150.64 Mg/ha for the no noise sce-
nario, 0 Mg/ha to 139.61 Mg/ha, and 0 Mg/ha 
to 119.75 Mg/ha for the daytime and nighttime 
scenarios respectively. AGB predictions for 30 

m pixels were within the range of the data but 
tended to underestimate AGB. AGB density 
predictions of forests in the study site ranged 
from 0.72 Mg/ha to 105.41 Mg/ha for the no 
noise scenario, 6.62 Mg/ha to 83 Mg/ha and 
1.97 Mg/ha to 83.55 Mg/ha for the daytime 
and nighttime scenarios respectively. 
 Visual assessments of AGB maps revealed 
similarities in the spatial distribution pattern 
of predicted AGB for the three scenarios (Fig-
ures 3-5). However, the daytime and night-
time scenarios appeared to have more areas 
with AGB densities ranging from 20-40 Mg/
ha than the no noise scenario while the map 

(a) Simulated PCL AGB estimated from linear regression vs RF predicted AGB with test data for 
the no noise scenario; (b) Simulated PCL AGB estimated from linear regression vs RF predicted 
AGB with test data for the daytime scenario; (c) Simulated PCL AGB estimated from linear re-
gression vs RF predicted AGB with test data for the night time scenario.

Figure 2
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for the daytime scenario exhibited the greatest 
predominance of relatively low AGB values. 
To demonstrate, predicted AGB estimates with 
the three scenarios for a highlighted portion of 
the study area, is shown on Figure 5. Within the 
highlighted extent, predicted AGB for the day-
time and nighttime scenarios exhibited lower 
AGB estimates than the no noise scenario. 
Compared to the other scenarios, lower AGB 

estimates were most prevalent with the day-
time scenario, represented by the 20-40 Mg/
ha range. Overall, AGB maps correspond to 
vegetation trends present with higher AGB in 
the southern portion of the study site primarily 
occupied by mature pines and lower biomass 
in the northern parts, including areas covered 
by young pine stands. At the pixel level, pre-
dictions of AGB from individual trees that var-

Scenario
RF Model Performance with Test Set Relationship with Reference AGB
R² RMSE (Mg/ha) R² RMSE (Mg/ha)

No Noise 0.51 19.69 0.46 34.99 
Daytime 0.42 19.67 0.45 35.27 
Nighttime 0.49 19.31 0.46 34.93 

Test set error statistics from RF models predicting AGB and relationships with aggregated airborne 
lidar-derived estimates of AGB under three scenarios; no noise, daytime and nighttime scenarios.

Table 2

(a) RF predictions of AGB density at a 30 m spatial resolution for the no noise scenario; 
(b) RF uncertainty at a 30 m spatial resolution for the no noise scenario. 

Figure 3
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ied greatly led to a high standard deviation of 
the predictions. Corresponding RF uncertainty 
maps (Figures 3-5) for the scenarios highlight 
pixels with particularly large differences in 
individual tree predictions, especially for the 
daytime scenario. RF uncertainties highlight-
ed in Figure 5 emphasize the predominance of 
high standard deviation of AGB predictions 
for the daytime scenario, compared to the oth-
er data scenarios. In this area, the 10-20 Mg/
ha range was most prevalent with the no noise 
scenario followed by the nighttime scenario. 
In comparison, there were substantially more 
pixels within the 20-30 Mg/ha range, indica-
tive of greater uncertainty, for the daytime sce-
nario (Figure 5).  

Discussion

The mapping of AGB has been identified as 
an approach to advance the knowledge about 
the terrestrial aspect of the carbon cycle (Le 
Toan et al. 2011). Consequently, is it necessary 
to develop approaches for characterizing the 
spatial distribution of AGB and forest carbon. 
ICESat-2 presents an opportunity to obtain 
large-scale coverage about vegetation through 
the collection of data along transects on the 
earth’s surface. Despite the lack of spatially 
complete data that will be measured from this 
source, complete coverage offered by Land-
sat or MODIS sensors may be leveraged to 
achieve comprehensive estimates of forest at-
tributes. This study presents one approach for 

(a) RF predictions of AGB density at a 30 m spatial resolution for the daytime scenario; 
(b) RF uncertainty at a 30 m spatial resolution for the daytime scenario.

Figure 4
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deriving wall-to-wall coverage of AGB from 
ICESat-2. Two sets of models were used; one 
for modeling the relationship between simulat-
ed PCL metrics for 100 m segments and refe-
rence airborne lidar-derived AGB and another 
set for relating mapped predictor variables to 
simulated PCL-estimated AGB. Using nonpar-
ametric regression models, AGB density was 
extrapolated from 3% of the 30 m pixels which 
comprise the study site to achieve spatially ex-
plicit AGB values. While the study area was 
focused on the SHNF, this approach is applica-
ble to scaling up to larger spatial extents. The 
use of 30 m map resolution is particularly use-
ful for upscaling purposes with the availability 
of spatially comprehensive data, such as Land-

sat imagery and NLCD products. In doing so, 
other variables may also be investigated for 
improving AGB estimates. For example, infor-
mation from optical imagery such as Tasseled 
cap indices, and ancillary data such as eleva-
tion and slope may be incorporated for regional 
scale mapping (Zald et al. 2016). Additionally, 
vegetation indices from multi-date satellite im-
agery could be investigated when upscaling to 
larger extents. To demonstrate, Li et al. (2015) 
highlighted the use of vegetation indices from 
multi-date imagery during the growing season 
for achieving more reliable results for regional 
AGB estimation.  It is also important to note 
that coarser map resolutions may provide good 
accuracies. To exemplify, Deo et al. (2018) in-

(a) RF predictions of AGB density at a 30 m spatial resolution for the nighttime sce-  
nario; (b) RF uncertainty at a 30 m spatial resolution for the nighttime scenario. 

Figure 5
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vestigated the impact of spatial resolution on 
the accuracy of regional scale AGB maps en-
compassing the eastern USA from Landsat-de-
rived parameters and concluded that grid sizes 
up to 1 km provided reasonable accuracies. 

In this study, validation statistics for the AGB 
models indicated RMSEs ranging from 69.34 
Mg/ha for the 30 m grid size, up to 80.78 Mg/
ha with the 1000 km grid size but with similar 
correlation (r) results between predictions and 

(a) RF predictions of AGB density at a 30 m spatial resolution for the 
nighttime scenario; (b) RF uncertainty at a 30 m spatial resolution for the 
nighttime scenario.

Figure 6
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the reference data (Deo et al. 2018). 
 Canopy cover has proven to be a valuable 
predictor of AGB in this study. Canopy cover 
calculated from simulated PCL segments was 
a significant predictor of airborne lidar-derived 
AGB and results from the RF models produced 
in this study indicated NLCD canopy cover as 
the most important predictor of AGB, regard-
less of the data scenario. Alternative approach-
es to generating AGB maps may include ex-
trapolating canopy cover estimated in the 
ATL08 product and then using this as a predic-
tor variable in RF models. A similar approach 
with GLAS parameters is presented in Hu et 
al. (2016), where RF was used to generate spa-
tially continuous GLAS parameters and then 
combined with mapped predictors including 
NDVI and landcover, to estimate global AGB 
at a 1-km resolution. In the case of extrapolat-
ing canopy cover and then predicting AGB, the 
possibility for simultaneously producing maps 
of these parameters will be beneficial as both 
represent fundamental attributes of forest veg-
etation structure.
 An advantage of using RF for modeling is 
the possibility of using OOB as part of mod-
el evaluation (Freeman et al. 2016). An eval-
uation of RF model performance for the no 
noise, daytime and nighttime scenarios with 
a separate test set yielded similar results to 
those provided with OOB data; R2 values were 
0.51, 0.42, and 0.49, compared to 0.49, 0.39, 
and 0.47 with OOB testing. RMSE values also 
ranged between 19 Mg/ha and 21 Mg/ha with 
the OOB and independent test set. Overall, re-
sults from both sources emphasized the ability 
of the nighttime scenario to out-perform the 
daytime scenario. RF also provided an indi-
cator of uncertainty in the resulting maps, es-
timated as the variability of predictions from 
1000 independent trees used to estimate pix-
el AGB. A comparison of the AGB and AGB 
uncertainty maps for the three scenarios high-
lighted areas with lower AGB predictions and 
corresponding higher uncertainty ranges for 
the daytime versus the nighttime and no noise 
scenarios. Factors that may contribute to final 

AGB uncertainty include allometric models 
for reference AGB estimation, input data er-
rors (e.g. NLCD, Landsat reflectance) and 
methods used for upscaling AGB to the pixel 
size for modeling. Prospective studies could 
involve a comprehensive uncertainty analysis 
of AGB estimates predicted from actual ICE-
Sat-2 data to ascertain error originating from 
different sources. 
 GEDI commenced its two-year mission in 
November, 2018 and will provide data for 
characterizing three-dimensional vegetation 
structure at a global scale (NASA 2019). GEDI 
is designed specifically to provide data for 
characterizing three-dimensional vegetation 
structure (NASA 2019). While ICESat-2 will 
collect measurements between 88° north and 
south latitudes during its three-year duration 
(Markus et al. 2017), GEDI will provide wave-
form observations between 52° north and 52° 
south latitudes (Marselis et al. 2016). Hence, 
the adoption of a synergistic approach between 
ICESat-2 and GEDI may support a more accu-
rate quantification of forest attributes, and spe-
cifically forest AGB. Future research should 
investigate potential synergies between ICE-
Sat-2 and GEDI for producing an AGB prod-
uct.

Conclusions

Up-to-date and spatially explicit assessments 
of AGB density can support the monitoring of 
forest carbon, contributing to reduced uncer-
tainties with the carbon budget and an improved 
understanding of changes in terrestrial carbon 
storage. In this study, we present an approach 
for mapping AGB with ICESat-2 which can 
be summarized as follows: (i) simulating and 
processing of ICESat-2 data to generate three 
data scenarios in a format similar to the ATL08 
product, (ii) developing relationships between 
the simulated vegetation product data and air-
borne-lidar derived AGB, and then between 
predicted AGB and mapped predictors con-
sisting of spectral metrics from Landsat 5 TM, 
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landcover and canopy cover using RF, and (iii) 
mapping AGB at 30-m spatial resolution and 
producing a corresponding measure of uncer-
tainty using the resulting RF models. Findings 
highlight canopy cover as the most important 
predictor of AGB and indicate similarities in 
the predictive capabilities of RF models for 
the three settings analyzed, and especially for 
the nighttime scenario which outperformed the 
daytime scenario. Overall, the methodology is 
conducive to achieving wall-to-wall AGB cov-
erage at much larger extents and in doing so, 
other variables such as topographic, climatic, 
and spectral indices may be considered for im-
proving AGB estimates. Efforts focused on the 
contributions of error from different sources 
would also be needed to ascertain final AGB 
uncertainties. In addition, the recent launch of 
GEDI will advance the capability of assessing 
AGB, thus highlighting the need for investi-
gations that support a synergistic approach 
between ICESat-2 and GEDI to characterize 
AGB and other forest attributes. Furthermore, 
while spatial coverage from both ICESat-2 and 
GEDI are not possible, the integration of spa-
tially comprehensive data, like Landsat optical 
imagery, can potentially facilitate a more com-
prehensive and accurate AGB product. 
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